
MPI for multi-core, multi socket, and GPU architec-
tures: Optimised shared memory allreduce

Andreas Jocksch1 and Jean-Guillaume Piccinali1

1CSCS, Swiss National Supercomputing Centre, Via Trevano 131

6900 Lugano, Switzerland

Motivation

• Today’s supercomputers have a growing number of cores per socket

and more and more sockets per node

• Intranode communication needs to be efficient also as part of more

complex internode communication

•MPI persistent collective communication [1, 2] provides new interface

•Our focus is on reduction operations allreduce (and reduce_scatter)

Contributions

•Utilisation of a shared memory segment [3] invisible to the user

• Copy in with reduction algorithm with chunks of the total message

•Reduction in shared memory using a tree algorithm with integrated

barrier [4]

• Consideration of multiple sockets per node but also multiple GPUs

Algorithms

• Copy in

+

+

+

Copy in (top), first reduction (middle), and second reduction (bottom), + equals re-

duction operator, colours indicate the different MPI tasks, horizontal data vectors

• Tree reduction

7

3

5

1

6

2

4

0

3

1

2

0

1

0

1

0

3

1

2

0

3

2

3

2

7

3

5

1

6

2

4

0

7

5

6

4

5

4

5

4

7

5

6

4

7

6

7

6

Tree reduction in shared memory, colours (and numbers 0-7) indicate the different

MPI tasks, vertical data vectors

•Algorithm corresponds to matrix vector multiplication (GEMV) with

a vector of only unity entries

Implementation and tuning

• For short messages, data and barrier flags on the same cache line

•Non-binary tree for non 2n tasks, first reduction step which reduces to

2n tasks, or no special treatment for short messages

• Benchmark for best algorithm at initialisation time: MPI_Allreduce_init

• Bytecode generated in initialisation phase for repeated execution

•Multiple sockets per node implemented with one shared memory seg-

ment per socket

• Prototype library which implements part of the persistent collective

communication of the MPI 4.0 standard and blocking collective com-

munication

https://github.com/eth-cscs/ext_mpi_collectives

GPU support

•One CUDA-kernel for multiple reductions and copy operations

•Alternatively call to cublas matrix-vector multiplication

Benchmarks

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

c
o
m

m
u
n
ic

a
ti
o
n
 t
im

e
 µ

s

message size / bytes

128 tasks Cray MPI
128 tasks EXT_MPI

64 tasks Cray MPI
64 tasks EXT_MPI

127 tasks Cray MPI
127 tasks EXT_MPI

63 tasks Cray MPI
63 tasks EXT_MPI

Allreduce, 128 MPI tasks on one node with two AMD EPYC 7742 CPUs, HPE (Cray)

MPI and EXT_MPI

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

c
o
m

m
u
n

ic
a

ti
o

n
 t

im
e
 µ

s

message size / bytes

64 tasks on 4 GPUs Cray MPI
64 tasks on 4 GPUs EXT_MPI

64 tasks on 4 GPUs EXT_MPI cublas

Allreduce, 64 MPI tasks on one node with four NVIDIA A100, HPE (Cray) MPI and

EXT_MPI

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1x10
6

c
o
m

m
u

n
ic

a
ti
o
n

 t
im

e
 µ

s

message size / bytes

128 nodes each 128 tasks Cray MPI
128 nodes each 128 tasks EXT_MPI

8 nodes each 128 tasks Cray MPI
8 nodes each 128 tasks EXT_MPI

Allreduce, 8 and 128 nodes each with 128 MPI tasks on two AMD EPYC 7742 CPUs,

HPE Slingshot network, HPE (Cray) MPI and EXT_MPI

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

c
o
m

m
u

n
ic

a
ti
o
n

 t
im

e
 µ

s

message size / bytes

4 nodes each 64 tasks on 4 GPUs Cray MPI
4 nodes each 64 tasks on 4 GPUs EXT_MPI

Allreduce, 4 nodes each with 64 MPI tasks on four NVIDIA A100, HPE Slingshot

network, HPE (Cray) MPI and EXT_MPI

•On the CPU our routines mostly outperform the reference library,

HPE(Cray) MPI

−All algorithmic options are used in the benchmark

− For short messages one shared memory segment is chosen (node is

assumed to be one socket), for long messages multiple ones (CPU

and GPU)

− For 127 tasks (prime number) not ideal performance, further tuning

required

• Problem: MPI point-to-point communication is slow with shared mem-

ory (shmget) therefore low performance of our library for multiple

nodes with multiple MPI tasks per node

Conclusions

• For single node CPU communication and single or multiple node GPU

communication very efficient implementation

• The persistent collective MPI communication interface allows for

highly optimised algorithms

•Our shared memory algorithm could be used for the blas level 1 oper-

ation GEMV for speeding it up with multiple MPI tasks per node

Future work

• Pipelining for overlap between computation and communication

(NCCL provides this feature).

• Comparison with NCCL

References

[1] Bouhrour, S., Pepin, T., Jaeger, J.: Towards leveraging collective per-

formance with the support of MPI 4.0 features in MPC. Parallel Com-

puting 109, 102860 (2022)

[2] Jocksch, A., Ohana, N., Lanti, E., Koutsaniti, E., Karakasis, V., Vil-

lard, L.: An optimisation of allreduce communication in message-

passing systems. Parallel Computing 107, 102812 (2021)

[3] Li, S., Hoefler, T., Hu, C., Snir, M.: Improved MPI collectives for MPI

processes in shared address spaces. Cluster computing 17(4), 1139–

1155 (2014)

[4] Mohamed El Maarouf, A.K., Giraud, L., Guermouche, A., Guignon,

T.: Combining reduction with synchronization barrier on multi-core

processors. Concurrency and Computation: Practice and Experience

p. e7402 (2023)

