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1 Abstract

The solution to a dense linear system can be accelerated by using
mixed precision iterative refinement (IR) relying on an approximate
LU-factorization. Such a factorization is usually obtained by sim-
ply reducing the employed floating-point precision, but certain ma-
trices allow for alternative approaches such as low-rank approxi-
mations. For example, matrices arising from the boundary element
method (BEM) are known to contain a block low-rank structure,
where certain blocks of the matrix can be replaced by low-rank ap-
proximations. We investigate the combination of both techniques
(reduced precision and low-rank approximations) for dense matrices
with sufficient structure and give indications on how the respective
parameters are impacting performance of the IR process.

2 Iterative Refinement (IR)

Alg. 1 outlines the general iterative refinement process using four
precisions (denoted in terms of the unit round-off), where us is es-
sentially a parameter on the method used to solve the correction
equation in line 10.
Algorithm 1: Iterative Refinement
Input: A ∈ Rn×n; b ∈ Rn; kmax ∈ N; ϵmax ∈ R
Output: approximate solution x̂ ∈ Rn to Ax = b

1 solve Ax0 = b in precision uf
2 solve LUx0 = b in precision uf
3 store x0 at precision u

4 for k = 1 to kmax do
5 compute rk = b− Axk−1 in precision ur
6 round rk to precision u

7 if ∥rk∥ ≤ ϵmax then
8 return xk−1
9 end

10 solve Adk = rk in precision us
11 store dk at precision u

12 xk = xk−1 + dk in precision u

13 end
14 % iteration has not converged

Generally, the precisions can be chosen freely, as long as the order
ur ≤ u ≤ us ≤ uf is maintained.

3 Hierarchical Off-Diagonal Low-Rank (HODLR) Matrix

In order to exploit the block row-rank property of a matrix, a suit-
able partition P (also referred to as the cluster tree) of (sub-)blocks
needs to be found. Depending on the size, location and hierarchy of
these blocks, several different formats of varying algorithmic com-
plexity can be distinguished. In this work, we used a so called
weak admissibility condition (dense blocks only along the diago-
nal) and employed the HODLR format (see Fig. 1), which is able to
achieve both LU-factorization and matrix-vector multiplication in
O(n log n).

Figure 1: HODLR matrix with corresponding cluster tree.

4 Results

We evaluate the combination of HODLR matrices with IR on a
set of kernel functions (Laplace, Gaussian and IMQ) and geome-
tries (unit circle/square) while adjusting the condition numbers by
adding small values on the diagonal (A = A + σI), leading to a
range of κ∞(A) ≈ 102 − 1012. For each matrix several HODLR
approximations were created with a specified upper error bound
ϵ ∈ {10−2, 10−4.10−6.10−8.10−12}. Those matrices were then fac-
torized and the resulting LU factors used as input for the IR pro-
cess. Time was measured as time-to-solution (i.e. including the
HODLR construction) on an AMD Ryzen Threadripper 3960X pro-
cessor featuring 24 cores. Multi-threading was enabled via Intel
MKL (for the dense parts) or OpenMP tasks (for the HODLR parts)
and results are displayed in Fig. 2.
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Figure 2: Time-to-solution of a dense solver and HODLR-based IR

While a higher approximation error is associated with faster
HODLR calculation, it might also require a larger number of it-
erations before convergence. As can be seen from Fig. 3, best per-
formance was observed for an approximation error that does not
exceed the reciprocal of the condition number, i.e. ϵ ≤ κ∞(A)−1.
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Figure 3: Computation time as a function of the approximation error.

5 Conclusion

We demonstrate that for matrices with a sufficient structure a solu-
tion accurate to a direct solver in double precision can be achieved at
a reduced complexity of O(n2) instead of O(n3). This difference in
scaling resulted in a speedup of more than 16X on the largest tested
matrix size. Similar to how a result accurate to double precision can
be refined from a single precision factorization, the method is able
to take advantage of mixed precision calculations to either reduce
the computational time or enhance the accuracy of the result even
further.
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