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• Predictions by purely data-driven Deep Neural Networks (DNNs) can suffer from physical inconsistencies
• Physics-Informed Neural Networks (PINNs) integrate physical laws, governing equations, initial and/or boundary conditions into the loss function to

improve the predictive capability of DNNs1

• Though PINNs can be trained on limited spatial or temporal data to attain accurate results, data-free PINNs are difficult to train2

• Based on the complexity of the problem and the desired accuracy of the solution, hybrid models combining CFD solvers and PINNs have been developed3

Poiseuille flow Potential flow Cylinder

Potential flow Rankine oval Blasius boundary layer flow

• The inclusion of physical constraints in NNs improves the prediction
capability of the network implemented for the cases of Poiseuille flow,
potential flow around a cylinder, and Blasius boundary layer flow,
especially in the near wall flow field

• For the case of potential flow around the Rankine oval, the
normalization of the flow data is affected by extreme gradients near
the source and sink and the PINN struggles to predict the flow field
accurately
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• The prediction capability of PINNs will be evaluated for further types
of governing equations, i.e., a lattice-Boltzmann method, and for
more complex flow problems, i.e., 2D Taylor-Green vortex

• The effect of constant parameters like the pressure gradient in one-
dimensional flow problems will be studied to improve the calculation
of the physical loss

Physics-Informed Neural Networks for Computational Fluid Dynamics (CFD)
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Problem description and governing equations

The current study juxtaposes PINN-generated flow fields to analytical
solutions and compares the predictive capability of PINNs with that of
DNNs, which do not have a physical loss as a constraint. The following
cases are considered in the current study,
• Poiseuille flow4

• Potential flow
, where flow velocity, 

• Blasius boundary layer flow5

Scaled stream function and the modified ODE

PINNs are computationally expensive compared to DNNs and the achieved 
accuracy must justify additional computation costs.
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Pressure drop along pipe length

Potential function

Flow case Input Output

Poiseuille flow r u

Potential flow x,y u,v

Blasius equation η 𝑓′, 𝑓′′

• Loss function

• Input and Output parameters

ic, initial conditions
w, wall or body boundary condition
bc, boundary conditions

MSE loss from
prediction

Loss from governing
equations on ic, w, bc
data

θ → 𝑢, 𝑣, 𝑓′, 𝑓′′

• HPC systems
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• Prediction Error density#

Potential flow - Cylinder

Potential flow – Rankine oval

• Testing error
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• Network architecture for Potential flow
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# Columns: Velocity fields 𝑢 (left) and 𝑣 (right); Rows: PINN (top) and DNN (bottom)
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