High-throughput computational screening of fast Li-ion conductors MARVEL

Tushar Thakur, Loris Ercole and Nicola Marzari

THEOS and NCCR-MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

EPFL

1. Broader Context

Motivation

CENTRE OF COMPETENCE IN RESEARC

- Conventional electrolytes are volatile and flammable.
- Solid State Electrolytes (SSE) have higher energy density and high operable (W/L) 2000 temperature.

Pinball model computes forces to run MD simulations [3].

II. Problem

energy density (wh/L)

- Experimental approaches for materials discovery is human intensive and not easily scalable, hence the need for computational screening.
- To compute ionic conductivity on hundreds of structures a fast and accurate potential is required.

Method

AiiDA serves as an infrastructure to automate and manage the complex workflows required in this screening [1] [2]. An example provenance -

DFT forces are well reproduced by the pinball model

Fig. 1 For 2 fast ionic conductors identified in this study (a) Pinball forces show excellent agreement with DFT forces, (b) Non-local interactions within the pinball model are required for better estimate of the dynamics

2. Results

Fig. 3 Self-consistent convergence of MSD plots and pinball parameters at 1000K of a few fast conductors identified in this study

Swiss National

Science Foundation

Fig. 4 Diffusion coefficients of a few promising candidates with their activation barriers

2.0

3. Conclusions

With this workflow implemented in AiiDA, one can find fast Li-ion conductors making use of the pinball model to run MD calculations that are as precise as *ab initio* MD while being a few hundred times less computationally expensive.

4. References

- [1] SP Huber et al Scientific Data 7, 300 (2020)
- [2] T. Thakur *et al* (in preparation)
- [3] L Kahle, A Marcolongo, N Marzari Physical Review Materials 2, 065405 (2018)

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957189. The project is part of BATTERY 2030+, the large-scale European research initiative for inventing the sustainable batteries of the future.

The National Centres of Competence in Research (NCCR) are a funding scheme of the Swiss National Science Foundation