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Mission of HLRS and its People

e Science in Performance, Networking and other HPC related topics.
e Supporting Research (~90%), SMEs and Industry (~10%) with HPC...
o Know-How
o Compute capacity
e Systems at the High-Performance Computing Center Stuttgart:
o HLRS Hawk
m 26 Petaflops x86
m 5632 nodes with 2x AMD EPYC ROME 7742, 256 GB memory
m 192 NVIDIA A100 GPUs
e NEC Cluster (Vulcan)
o Heterogeneous Cluster

Research for and with supercomputing supports society.
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Fig. 1: HLRS Hawk. A 26 Petaflops on-prem High-Performance Computer.

Approach

e Decompositing the bone into cuboid subvolumes:
o 0.6 mm,1.2mm, 2.4 mm, 4.8 mm or 9.6 mm.
e Direct discretization of the voxels with hexahedral finite
micro-elements.
e Subvolume is considered and treated like a finite macro-element.
e Macro-element-stiffness matrix replicates effective anisotropy.

Fig. 7: Decomposition and direct discretization
of the image into cuboid subvolumes.
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An Example Use Case

e Basic research on human trabecular bone.
e Computing effective or apparent stiffness tensors.
o Supporting continuum mechanical simulations based on
fine tuned stiffness information.

Fig. 2: The X-Ray scan of an original and an artificial hip joint.

Input data

e Computed Tomography (CT) datasets of various resolutions, e.qg.

o Human femoral heads
o Human proximal tibia
e Pre processed for:
o Binary segmentation
o Direct discretization
e Datasets are available via DaRus
o The data Repository of the
University of Stuttgart.

Effective stiffness

e Stiffness — Resistance against deformation.
e A simple compression test of a structure results in the apparent stiffness.
e The direct tensor computation computes the

effective macro elements stiffness.

o Linear hexahedral: 20 dof, 20 load cases

o Quadratic hexahedral: 60 dof, 60 load cases

The resulting element stiffness matrices can be mapped to continuum
mechanical FEAs.
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Fig. 8: The correlations of the first 6 orthotropic stiffness parameters of the

decomposition size of 1.2 mm.
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Biomechanical Challenge

e Trabecular bone consists of many small struts and plates.
o Highly anisotropic
o Living organ
o Patient specific
o Adapts to stress/strain from external loading.

e Microfocus Computed Tomography for imaging bones:
o 0.005 - 0.015 mm/Voxel
o Sufficient for computing effective stiffness tensors.
o Radioactive doses prohibit scanning in situ.

e Clinical Computed Tomography for imaging in situ:
o ~0.175-0.6 mm/Voxel
o Resolution too low for computing stiffness tensors.

Fig. 3: A human femoral head in its Fig. 4: The corresponding clinical Computed
pathology vessel. Tomography scan.

Software Stack
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e Fortran

o Pre processing

o Direct Tensor Computation (DTC)
o Initial post processing
o Tensor optimizations
Parallelization with MPI
Solver by PETSc

Mesh partitioning by Metis
Bash/Python

o Process steering

o Analyzes

Fig. 5: The microfocus computed tomography Fig. 6: Scans at the resolution of ~0.005 mm/Voxael
scan of the human femoral head with a show the struts and plates of trabecular bone.
resolution of 0.01495 mm/Voxel
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Profiling and Performance by Morphometry

e Direct discretization leads to:
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o Scheduling

: Fig. 9: Different serial and parallel parts of computing a single subvolume lead to a characteristic
o Energy efficiency

relationship between the Bone Volume/Total Volume (BV/TV) ratio and the energy usage.

Implementation O
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e Step1
o Read the CT image.
o Decompose into domains.
o Calculate the morphometric quantity.
e Step?2
o Compute the ideal distribution of domains to
MPI communicators of ideal size.
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o Prepare the input data for DTC. SR
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Energy savings are expected around 5-25%, Bone Volume/Total Volume BV/TV

depending on the size of the domain. Fig. 10: The Direct Tensor Computation is started with a few to more than 100 000 cores to compute
many domains in parallel. The main rank distributes the work packages to the worker communicators.



