Decomposing the bone into cuboid subvolumes: Macro-element-stiffness matrix replicates effective anisotropy. Subvolume is considered and treated like a finite Direct discretization of the voxels with hexahedral finite

Mission of HLRS and its People
- Science in Performance, Networking and other HPC related topics.
- Supporting Research (~95%), SMEs and Industry (~10%) with HPC...
- Know-How
- Compute capacity
- Systems at the High-Performance Computing Center Stuttgart:
 - HLRS Hawk
 - 26 Petaflops x86
 - 5632 nodes with 2x AMD EPYC ROME 7742, 256 GB memory
 - 192 NVIDIA A100 GPUs
- NEC Cluster (Vulcan)
 - Science in Performance, Networking and other HPC related topics.

Input data
- Computed Tomography (CT) datasets of various resolutions, e.g.:
 - Human femoral heads
 - Human proximal tibia
 - Pre processed for:
 - Binary segmentation
 - Direct discretization
 - Datasets are available via DaRus
 - The data Repository of the University of Stuttgart

Approach
- Decomposing the bone into cuboid subvolumes:
 - 0.8 mm, 12 mm, 2.4 mm, 4.8 mm or 9.6 mm
 - Direct discretization of the voxels with hexahedral finite micro-elements.
 - Subvolume is considered and treated like a finite macro-element.
 - Macro-element-stiffness matrix replicates effective anisotropy.

Effective stiffness
- Stiffness — Resistance against deformation.
- A simple compression test of a structure results in the apparent stiffness.
- The direct tensor computation computes the effective macro elements stiffness.
 - Linear hexahedral: 20 dof, 20 load cases
 - Quadratic hexahedral: 60 dof, 60 load cases

The resulting element stiffness matrices can be mapped to continuum mechanical FEA's.

An Example Use Case
- Basic research on human trabecular bone.
- Computing effective or apparent stiffness tensors.
- Supporting continuum mechanical simulations based on fine tuned stiffness information.

Biomechanical Challenge
- Trabecular bone consists of many small struts and plates.
 - Highly anisotropic
 - Living organ
 - Patient specific
 - Adapts to stress/strain from external loading.
- Microfocus Computed Tomography for imaging bones:
 - 0.005 - 0.015 mm/Voxel
 - Sufficient for computing effective stiffness tensors.
- Radioactive doses prohibit scanning in situ.
- Clinical Computed Tomography for imaging in situ:
 - ~0.575-0.6 mm/Voxel
 - Resolution too low for computing stiffness tensors.

Software Stack
- Fortran
 - Pre processing
 - Direct Tensor Computation (DTC)
 - Initial post processing
 - Tensor optimizations
 - Parallelization with MPI
 - Solver by PETSc
 - Mesh partitioning by Metis
 - Bash/Python
 - Process steering
 - Analyzes

Profiling and Performance by Morphometry
- Direct discretization leads to:
 - Precise results
 - High computational effort
 - Size of cuboid subvolumes fixed.
- Bone Volume/Total Volume is a morphometric measure.
- Determination is computationally cheap.
- Profiling of the image for better load balancing is feasible.

Approach
- Computationally cheap analysis of the bones morphometry for ideal:
 - Load balancing
 - Scheduling
 - Energy efficiency

Implementation
- Step 1: Read the CT image.
 - Decompose into domains.
 - Calculate the morphometric quantity.
- Step 2: Compute the ideal distribution of domains to MPI communicators of ideal size.
 - Prepare the input data for DTC.
- Step 3: Run a modified version of DTC with non-uniform communicators.

Energy savings are expected around 5-25%, depending on the size of the domain.