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Motivation
• Deep neural networks (DNNs) are used in a wide range of application

areas and scientific fields
• The networks and the amount of training data have grown consider-

ably over the years
• The development of novel, distributed, and highly scalable training

methods has become essential
• We aim to improve the robustness of the training algorithm and to

reduce its dependence on hyper-parameters

Problem
Given a dataset D = {(xi, ci)}p

i=1 of p samples, consisting of inputs xi ∈
Rn, and corresponding labels ci ∈ Ro, our goal is to find a suitable model
N : Rd × Rn → Ro which captures the data well. Parameters θ ∈ Rd of
the model N are found through training, i.e. by minimizing the following
finite-sum objective function:

arg minL(θ,D) := 1
|D|

|D|∑
i=1

ℓ(N (θ, xi), ci),

where ℓ : Ro × Ro → R is the loss function.Decomposition in Parameters: Algorithm
Preconditioned L-BFGS method

1. Distribute network and dataset across multiple nodes
2. On each node, split parameters into trainable and non-trainable
3. Optimize the trainable parameters on each subdomain using local

optimizer, e.g., L-BFGS, Adam, . . .

4. Form nonlinear preconditioner by accumulating the updated param-
eters from each node/subdomain

5. Perform global, preconditioned L-BFGS step
6. Go to step 3
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Decomposition in Parameters: Experimental setup
• PyTorch distributed framework with NCCL backend
• Training of physics informed neural networks (Allen-Cahn equation)
• Residual neural network (6 layers, 40 neurons each)
• Decomposing the network into 2,3, and 6 subdomains/nodes
• Varying number of local training steps for each subdomain

Decomposition in Parameters: Results
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Decomposition in Data: Algorithm
Stochastic additively preconditioned trust-region strategy (SAPTS)

1. Decompose dataset into mini-batches
2. Decompose the mini-batch into micro-batches (each node gets one

micro-batch and a copy of the network)
3. Train on each micro-batch, in parallel, using the trust-region method
4. Accumulate the updated network parameters across all nodes
5. Perform TR step on the mini-batch
6. Go to next mini-batch in step 2 until all mini-batches have been used

Decomposition in Data: Methodology
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Decomposition in Data: Experimental setup
• PyTorch distributed framework with NCCL backend
• Image classification task: MNIST and CIFAR-10 datasets
• Feedforward neural network (2 fully connected layers); convolutional

neural network (2 conv., 1 max pooling, and 3 fully-connected layers)
• No. nodes: 1, 2, 4, 8; mini-batch size: 100; micro-batch size: 100/no.

nodes; SGD learning rate: 0.01

Decomposition in Data: Results
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