

Multilevel and Domain-Decomposition Solution Strategies for Solving Large-Scale Phase-Field Fracture Problems

Hardik Kothari¹, Alena Kopaničáková^{1,2}, Patrick Zulian^{1,3}, Maria Nestola¹, Edoardo Pezzulli⁴, Thomas Driesner⁴, Rolf Krause^{1,3} 1. Euler Institute, Università della Svizzera italiana, Switzerland 2. Brown University, USA, 3. UniDistance, Switzerland, 4. ETH Zürich, Switzerland

Phase-field fracture propagation for brittle fractures

$(\boldsymbol{u}^{t}, \boldsymbol{c}^{t}) = \underset{\boldsymbol{u}=\boldsymbol{u}_{D}^{t} \text{ on } \partial \Omega_{D}}{\arg\min} \Psi(\boldsymbol{u}, \boldsymbol{c}) \coloneqq \int_{\Omega} \left((1-\boldsymbol{c})^{2} \psi_{e}^{+}(\boldsymbol{u}) + \psi_{e}^{-}(\boldsymbol{u}) \right) d\Omega + \frac{\mathcal{G}_{c}}{2} \int_{\Omega} \left(\frac{\boldsymbol{c}^{2}}{l_{e}} + l_{s} |\nabla \boldsymbol{c}|^{2} \right) d\Omega + \frac{\gamma}{2} \int_{\Omega} (\langle \boldsymbol{c} - \boldsymbol{c}^{t-1} \rangle_{-})^{2} d\Omega$

Discretization

Solution strategy

- Unstructured grid • Finite elements
 - Additive/Multiplicative Schwarz Preconditioned Inexact Newton method (ASPIN/MSPIN) \rightarrow Domain-decomposition based approach
 - → Nonlinear preconditioning
 - Field Split preconditioning
 - \rightarrow Solve the displacement and phase field separately in preconditioning step

Idea of nonlinear preconditioning

• Original nonlinear problem:

- Find (u, c) such that F(u, c) = 0
- Employ a preconditioning operator G
 - Such that solution of F(u, c) = 0 is same as G(F(u, c)) = 0
- The preconditioned nonlinear system can be written as a composite operator
 - $\circ \quad \mathscr{F}(u, c) = G \circ F(u, c) = 0$
- Do a Newton iteration to solve $\mathcal{F}(u, c) = 0$.
 - This modifies the computation of preconditioned residual and preconditioned Jacobian

Numerical Tests

Compare different solution methods

- Alternate minimization (AM) method
 - Standard approach (AM-ST)
 - Newton Direct solver (AM-ND)
 - Newton Krylov (AM-NK)
- ASPIN (Additive preconditioning)
- MSPIN (Multiplicative preconditioning)

Pressure induced phase-field fracture propagation

Challenging problem to solve

- Non-convex
- Non-smooth
- Ill-conditioned

Discretization

- Structured grid
- Finite elements

Solution strategy

- Recursive multilevel trust region (*RMTR*)
 - \rightarrow Globally convergent
- Sequential quadratic programming smoother (*MPRGP*, Projected Gauss-Seidel)

 $c:\Omega\to[0,1]$

- 3. Multilevel treatment of constraints

Convergence history of the iterative method

L-shaped panel test

Asymmetrically notched beam test

T.,	Solver	Time (min)	Speedup wi	ith respect to			
1^{u}			AM-ND	AM-NK	AM_INK	AM-ST	ASPIN

(a) **Small**: fine grid with $77 \times 77 \times 77$ nodes and $1\,826\,132$ degrees of freedom, generated with 3 RMTR levels.

(b) Medium: fine grid with $157 \times 157 \times 157$ nodes and $15\,479\,572$ degrees of freedom, generated with 3 RMTR levels.

Analysis of execution time

Analysis of memory requirements of iterative methods

• Dashed red line marks 80% efficiency • Imbalance due to hierarchy generated by refinement

Weak scaling

0.0

Sneddon test: weak scaling efficiency, runtimes, and imbalance. The size of the grid is $s \times s \times s$, where $s = \lfloor (1000 \times n)^{\frac{1}{3}} \rfloor$ hence with $s^3 \times 4$ dofs in the coarse level and $((s-1) \times 2^{(l-1)} + 1)^3$ at each RMTR level l (fine level is l = 3). The reminder rounded by

the ceiling operator $\left[\cdot\right]$ will cause some fluctuations in the amount of work of each run and defects in the efficiency plot. The size of smallest run consists of 740 772 dofs while the largest one consists of 48 035 956 dofs.

Fracture networks in geological applications

2D: Reproducing the frequency and propagation of joints in sedimentary layers

2D: Two-dimensional simulation with **1000 randomly distributed fractures**

3D: Three-dimensional simulation with 100 randomly distributed fractures and 242'793'828 dofs

Algorithmic scalability

SQP-Smoother

- Hybrid Block Jacobi-Projected Gauss-Seidel
- Each process performs *Projected Gauss-Seidel* on its local block
- Convergence properties are influenced by the number of blocks (36 cores/blocks per computing node)

nodes

2D: 1000 fractures, 28.1 M dofs

3D: 100 fractures, 122.7 M dofs

Open Access articles

Zulian, P., Kopaničáková, A., Nestola, M.G.C. et al. Large scale simulation of pressure induced phase-field fracture propagation using Utopia. CCF Trans. HPC (2021).

Kopaničáková, A., Kothari, H., Krause, R., 2023. Nonlinear field-split preconditioners for solving monolithic phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering, 403, p.115733.

Kopaničáková, A., Krause, R., 2020. Recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering, 360, p.112720.

GIT License BSD 3-Clause

https://bitbucket.org/zulianp/utopia https://bitbucket.org/alena kopanicakova/pf frac spin

