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Fracture networks in geological applications 

2D: Two-dimensional simulation with 1000 randomly distributed fractures

3D: Three-dimensional simulation with 100 randomly distributed fractures and 242’793’828 dofs

Algorithmic scalability
SQP-Smoother

● Hybrid Block Jacobi-Projected Gauss-Seidel
● Each process performs Projected Gauss-Seidel on its local block
● Convergence properties are influenced by the number of blocks (36 cores/blocks per computing node)

2D: 1000 fractures, 28.1 M dofs 3D: 100 fractures, 122.7 M dofs

Strong scaling
● Dashed red line 

marks 80% efficiency

Weak scaling
● Dashed red line 

marks 80% efficiency
● Imbalance due to 

hierarchy generated by 
refinement

Sneddon test: Error of total crack volume 
(TCV) and opening displacement (COD)
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Pressure induced phase-field fracture propagation

Challenging problem to solve
● Non-convex
● Non-smooth
● Ill-conditioned

Solution strategy
● Recursive multilevel trust region (RMTR)

➝ Globally convergent
● Sequential quadratic programming smoother (MPRGP, Projected Gauss-Seidel)

Discretization
● Structured grid
● Finite elements

Phase-field fracture propagation for brittle fractures

● Unstructured grid
● Finite elements

● Additive/Multiplicative Schwarz Preconditioned Inexact Newton method (ASPIN/MSPIN)
➝ Domain-decomposition based approach
➝ Nonlinear preconditioning

● Field Split preconditioning
➝ Solve the displacement and phase field separately in preconditioning step

Discretization Solution strategy

L-shaped panel test

Asymmetrically notched beam test

Analysis of execution time

Analysis of memory requirements of iterative methods

Idea of nonlinear preconditioning
● Original nonlinear problem:

○ Find (u, c) such that F(u, c) = 0 
● Employ a preconditioning operator G

○ Such that solution of F(u, c) = 0  is same as G(F(u, c)) = 0
● The preconditioned nonlinear system can be written as a composite operator

○ F (u, c) = G o F(u, c) = 0
● Do a Newton iteration to solve F (u, c) = 0. 

○ This modifies the computation of preconditioned residual and 
preconditioned Jacobian

https://bitbucket.org/zulianp/utopia
https://bitbucket.org/alena_kopanicakova/pf_frac_spin
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Open Access articles

Convergence history of the iterative method

Numerical Tests
Compare different solution methods
● Alternate minimization (AM) method

○ Standard approach (AM-ST)
○ Newton Direct solver (AM-ND)
○ Newton Krylov (AM-NK)

● ASPIN (Additive preconditioning)
● MSPIN (Multiplicative preconditioning)

2D: Reproducing the frequency and propagation of joints in sedimentary layers 

Università
della
Svizzera
italiana

https://bitbucket.org/zulianp/utopia
https://bitbucket.org/alena_kopanicakova/pf_frac_spin

