Multilevel and Domain-Decomposition Solution Strategies for Solving Large-Scale Phase-Field Fracture Problems

Hardik Kothari1, Aleia Kopaničáková1,2, Patrick Zulian1, Animesh Chatterjee3, Maria Nestola1, Edoardo Pezzulli4, Thomas Driesner4, Rolf Krause1,3
1. Euler Institute, Università della Svizzera italiana, Switzerland 2. Brown University, USA, 3. UnitDistance, Switzerland, 4. ETH Zürich, Switzerland

Phase-field fracture propagation for brittle fractures

Discretization
- Unstructured grid
- Finite elements

Solution strategy
- Additive/Multiplicative Schwarz Preconditioned (ASPIN/MSPIN)
- Domain-decomposition based approach
- Nonlinear preconditioning
- Field Split preconditioning
- Solve the displacement and phase field separately in precondition step

Idea of nonlinear preconditioning
- Original nonlinear problem: Find u^* such that $F(u^*, c^*) = 0$
- Employ a preconditioning operator G
- The preconditioned nonlinear system can be written as a composite operator $G(F(u, c) = 0)$
- Newton-Krylov (AM-ML)
- ASPIN (Additive preconditioning)
- MSPIN (Multiplicative preconditioning)

Original nonlinear problem:

- Find (u, c) such that $F(u, c) = 0$
- This modifies the computation of preconditioned residual and preconditioned Jacobian

Convergence history of the iterative method

L-shaped panel test

Asymmetrical notch beam test

Analysis of execution time

Analysis of memory requirements of iterative methods

Convergence properties are influenced by the number of blocks (20 cores/blocks per computing node)

Presssure induced phase-field fracture propagation

Challenging problem to solve
- Nonconvex
- Non-smooth
- Inconditioned

Discretization
- Structured grid
- Finite elements

Solution strategy
- Recursive multilevel load region (RMTR)
- Globally convergent
- Sequential quadratic programming smoother (MRGSP, Projected Gauss-Seidel)

Numerical Tests

Comparing different solution methods
- Alternate minimization (AM-ML)
- Standard approach (AM-ST)
- Newton Direct solver (AM-ND)
- Newton-Krylov (AM-ML)
- ASPIN (Additive preconditioning)
- MSPIN (Multiplicative preconditioning)

Solutions strategy
- Recursive multilevel load region (RMTR)
- Globally convergent
- Sequential quadratic programming smoother (MRGSP, Projected Gauss-Seidel)

Strong scaling
- Dashed red line marks 85% efficiency

Weak scaling
- Dashed red line marks 85% efficiency
- Imbalance due to hierarchy generated for refinement

Fracture networks in geological applications

2D: Reproducing the frequency and propagation of joints in sedimentary layers

3D: Three-dimensional simulation with 100 fractures

3D: Three-dimensional simulation with 100 randomly distributed fractures and 242’793’828 dofs

Algorithmic scalability

- Hybrid Block Jacob-Projected Gauss-Seidel
- Each process performs Projected Gauss-Seidel on its local block
- Convergence properties are influenced by the number of blocks (20 cores/blocks per computing node)

Open Access articles

2D: 1000 fractures, 28.1 M dofs

3D: 300 fractures, 122.7 M dofs

https://bitbucket.org/zulianp/utopia