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1. Objectives 4. Results

» Projected density of states (PDOS): PBEsol+U+V and HSEOQ6 provide very similar
PDOS at different concentrations = of Li, while PBEsol wrongly predicts the metallic nature

» Motivation: The design of novel cathode materials for Li-ion batteries requires accurate of the olivines at intermediate concentrations = (see Fig. 3) [6].

first-principles predictions of their properties.

» Problem: Density-functional theory (DFT) with standard (semi-)local functionals (e.g. | PBEsol | PBEsohliV  HSEOS » Oxidation state: PBEsol fails to
PBEsol) fails due to strong self-interaction errors for partially filled d shells of transition- account for the digital changes in the
metal (TM) elements. x=0 atomic occupations of Mn and Fe atoms,

while PBEsol+U+V correctly predicts

» Solution: DFT with extended Hubbard functionals (PBEsol-+U+V) correctly predicts % such changes with ceven higher accuracy
the digital change in oxidation states of the TM ions for mixed-valence phases occurring at = ] than HSEQ6 (see Fig. 4) [6].
intermediate Li concentrations, leading to voltages in remarkable agreement with %
experiments. 2 ly - Li MnPO, Li FePO, LiMn, Fe PO,
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» Method: PBEsol+U+V requires onsite U and intersite ¥V Hubbard parameters that are Q 0 ool 3
computed self-consistently using density-functional perturbation theory (DFPT). - S x=34 2
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The DFT total energy is augmented by a corrective Hubbard term [1] —Fel =Mz Fe3 = Mn4 O Mn1 =Mn2 =Mn3 = Mn4 =Fel mFe2 mFe3 mFe4
Fig. 3: Projected density of states. Fig. 4: Lowdin occupations.
FEror = Eprr + P ,
where » Voltages: PBEsol greatly underestimates the intercalation voltages, while HSE06 and
PBEsol+U overestimate them. DPBEsol4-U+V gives the most accurate voltages that are
1 7 7 7 1 - 17 o Jlo in a remarkable agreement with experiments (see Figs. 5 and 6) [6,7].
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where [ and J are atomic site indices, m; and msy are the magnetic quantum numbers, and o I
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Fig. 5: Voltages for olivine cathodes. Fig. 6: Voltages for spinel cathodes.

where 1), are the Kohn-Sham wave functions, and ¢, and ¢, are the localized atomic
orbitals which characterize the Hubbard manifold (orthogonalized using the Lowdin method).

5. Conclusions

Linear-response/DFPT calculation of Hubbard parameters:
» PBEsol+U+V is an accurate and powerful tool for modeling cathode materials for Li-ion

batteries.

oot Hubbard interactions are computed as a second derivative of

:gggrfé- DFT the total energy with respect to the occupation of the

» PBEsol+U+V correctly predicts a digital change in the atomic occupations of TM ions in

g B Hubbarc r2nan|fo|d [21 ) the mixed-valence phases of cathode materials.
L d”Lppr . d”Lppp _ (_ —1) . (_( 0)—1)
dn? dnz VX X | » Voltages computed using PBEsol+U+V are more accurate than those computed using
—— - U and V are defined as diagonal and off-diagonal matrix PBEsol+U and even HSEQ6, and are in remarkable agreement with experiments.

elements, respectively:
UI _ ((XO)—l . X—l)H 7 VIJ _ ((XO)—I . X—l)]J

where x7; and X! ; are the interacting and non-interacting response matrices, respectively.

Fig. 1. Eiot vs Nelec. » PBEsol+U+V is computationally much cheaper than HSEQ6 but it gives the electronic

structure that is similar to the HSEQ6 one.
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Fig. 2: Crystal structure of (a) antiferromagnetic phospho-olivine LiMn; oFe; ,PO4 and spinel
cathodes (b) antiferromagnetic LiMn,0O, and (c) ferrimagnetic LiMn; 5Nij 50,.
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