
AddressingExascaleChallenges for
NumericalAlgorithmsofStrongly

CorrelatedLatticeModels
Samuel Gozel and Andreas M. Läuchli

Laboratory for Theoretical and Computational Physics, Paul Scherrer Institute,
CH-5232 Villigen-PSI, Switzerland

Introduction
Strongly correlated lattice models are a class of quantum models where particles are localized at some lattice sites and are strongly interacting
with each other. The Heisenberg model, for instance, describes the interaction of spins on a lattice. Solving such a model amounts to
diagonalizing a symmetric (or hermitian) matrix, the Hamiltonian, for a few lowest eigenvalues. Since the matrix dimension scales exponentially
in the number of particles, it is necessary to take symmetries into account to achieve large system sizes [1]. These symmetries allow to write the
Hamiltonian in block diagonal form. Keeping the Hamiltonian matrix of the wanted block in sparse format is not an option as its dimension is of
order 1011−1012 for system sizes of interest. In the large-scale Lanczos algorithm, it is thus necessary to perform the matrix vector multiplication
(MVM) by building the Hamiltonian on the fly. This construction, however, is far from trivial and implies various types of operations. This
so-called “Exact Diagonalization” (ED) algorithm has been successfully implemented using multi-core and multi-node architectures (pthreads,
OpenMP, MPI) [2, 3]. Given the current evolution in the architecture of HPC clusters, our aim is to develop a performance portable ED
algorithm running on GPUs.

Physical models
Spin lattice models describe the behavior of magnetic ions in crystals. The underlying
lattice may be of different types. In practice, we impose periodic boundary conditions
to reproduce the real “infinite-size” system and to exploit translation symmetry.

1D ring Square lattice Triangular lattice Square lattice folded
into a torus

We then define an interaction Hamiltonian as a sum of local, non-commuting terms

H =
∑

k

Hk, possible interactions: Hk = Si · Sj , Sx
i Sx

j + Sy
i Sy

j + ∆Sz
i Sz

j , ...

The symmetries are spatial symmetries (translation, reflection, rotation) and spin
symmetries (spin inversion, spin U(1) and spin SU(2) symmetries).

Algorithm
We use the Kokkos library [4] to achieve portability. In the MVM, there are 2 major for loops: one (small) loop over all bonds in the lattice,
thus of order O(N), and the large loop over all states (D). Within these loops, there are 3 loops over T = O(N) elements (see 1 and 2 ).

states = array of uint64 of dimension D
u, w = arrays of double of dimension D

MVM u← Hw (focus on off-diagonal part)
1: ...(diag part trivial)
2: for b ∈ Bonds do
3: for j = 0, ..., D − 1 do
4: if check(states[j], b) then
5: u(j) += computeOffDiag(j, states, b, w)

Check states[j]b1 != states[j]b2

out = computeOffDiag(j, states, b, w)
1: outState = flip(states[j], b)
2: outRepres = search_repres(outState)
3: outIndex = binary_search(outRepres, states)
4: inAmpl = get_amplitude(states[j])
5: outAmpl = get_amplitude(outRepres)
6: out = Joff-diagw[outIndex]

√
inAmpl/

√
outAmpl

1

2

1 outRepres = search_repres(state)
1: outRepres = state
2: for t = 1, ..., T do
3: temp = applySymOp(t, state)
4: if temp < outRepres then
5: outRepres = temp

applySymOp() contains a loop over N el-
ements.
1 is a min reduction (T = O(N)).
2 adds precomputed elements stored in

a table of dimension T = O(N) when
matching condition is true.

2 ampl = get_amplitude(repres)

1: ampl = 1
2: for t = 1, ..., T do
3: temp = applySymOp(t, repres)
4: if temp == repres then
5: ampl += phaseLookup[t]

Large-scale problem
The dimension of the entire vector space describing the
states of the model scales exponentially with the sys-
tem size N as dN , where d is the “local” vector space
dimension (d = 2 for a S = 1/2 spin). The symmetries,
however, allow to significantly reduce the effective vec-
tor space dimension D (but not its scaling). Below we
show the dimension of the matrix of the systems that
we target, together with the memory required to store
one real Lanczos vector in double precision (64 bits).

# of sites N 46 48 50 52
2N 7.0e13 2.8e14 1.1e15 4.5e15
D 8.9e10 3.4e11 1.3e12 4.8e12

Memory TB 0.7 2.7 10 38
Status state-of-the-art our goal

We need to store 3 arrays (64 bits) of dimension D.

Outlook
Exact diagonalization of quantum lattice models translates into a large-scale eigen-
value problem for a symmetric (or hermitian matrix). The constraint of building
the matrix of the Hamiltonian on the fly for memory reasons leads to a complicated
MVM where several loops appear when treating an off-diagonal term. Some loops
contain if statements which cannot easily be removed. It is yet unclear what is the
best method for executing such a MVM on a cluster of GPUs.

References
[1] H. Q. Lin, Phy. Rev. B 42 6561 (1990)
[2] A. Weisse, Phys. Rev. E 87, 043305 (2013)
[3] Wietek & Läuchli, Phys. Rev. E 98, 033309 (2018)
[4] Ch. R. Trott et al., IEEE Transactions on Parallel

and Distributed Systems 33, 805 (2022)


