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ABSTRACT
The achievement of high plasma confinement is the key to realize
commercially attractive energy production by magnetic confinement
fusion (MCF) devices. Turbulence plays a significant role in maintain-
ing the plasma confinement within MCF devices. The GENE-X code
is based on an Eulerian (continuum) approach to the discretization
of the five dimensional gyrokinetic equation that describes plasma
turbulence. Our discretization is specialized to simulate plasma tur-
bulence anywhere within MCF devices, from the hot plasma core to
the cold wall. GENE-X is written in object-oriented modern Fortran
2008 leveraging MPI+OpenMP parallelization to facilitate large scale
turbulence simulations. Here, we present our development efforts to
further extend the parallelization scheme to GPUs, which is essential
for scalability support towards simulations of larger, reactor-relevant
fusion devices. The current implementation in GENE-X provides a
proof of concept of our native Fortran/C++ interoperability approach by
successfully supporting several GPU backends such as OpenACC,
OpenMP offload and CUDA. We present first benchmarks of our
directive-based OpenACC implementation of the most computation-
ally expensive part of GENE-X. A significant performance increase
was achieved on the GPU, compared to equivalent CPU benchmarks.

INTRODUCTION TO GENE-X
GENE-X [1] is a full-f gyrokinetic turbulence code written in
Fortran 2008 with object-oriented design. GENE-X features
electromagnetic field equations [2], collision models [5], and
a flux-coordinate independent (FCI) [4] coordinate system.
GENE-X shares an FCI-based mesh equilibrium and field solver
library called PARALLAX with the Braginskii fluid GRILLIX [3].

GENE-X solves 5D arrays of distribution function consisting
RZ,φ, v∥, µ, and species axes.
GENE-X uses a heterogenous parallelization:
• OpenMP for intra-node parallelization on CPUs
• MPI for inter-node parallelization across CPUs

• CPU: low latency, best for wide-range of tasks
• GPU: more cores, high throughput for more repetitive tasks

Issue: Some Fortran 2008 object-oriented features used
in GENE-X are not yet supported by the Fortran compilers
from PGI or NVIDIA SDK.
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Figure 1: Overview of GENE-X timestep.

Operators (abbr. as op) in GENE-X are classes containing
the compute region of specific algorithms based on strategy
design pattern.

The following arithmetic operations in GENE-X are used for the
preliminary GPU implementations:
1. y[i] = c
2. y[i] = x[i]

3. y[i] = y[i] + a ∗ x[i]
4. y[i] = a1 ∗ x1[i] + a2 ∗ x2[i]

The following static and dynamic operators are the right-hand-
side (RHS) terms of the gyrokinetic Vlasov equation used
in GENE-X which are used for preliminary benchmarks:
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Additionally, the following operators calculate the moments
of the distribution function and contain MPI communicators
which are used for multi-GPU testing:
7. op_mom_ohms_law for solving the Ohm’s law.
8. op_mom_maxwell_eq for solving the quasi-neutrality eq.

SOFTWARE ENGINEERING OF THE NATIVE FORTRAN/C++ INTERFACE
An auxiliary C++ layer dedicated to the compute region for GPU offloading can be interoperable with the main Fortran layer. The
benefits of having such auxiliary C++ layer are:
• Well established Fortran compilers can still be used
• Additionally GPU-optimized C++ compilers can be used
• More flexibility towards various machines

• Creating GPU kernels on the C++ layer is possible
• Non-invasive refactoring to the main Fortran layer
• Maintain the modular concept and design

This multi-language approach is referred
here as Fortran/C++ hybrid model.
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Figure 2: GENE-X composition by lan-
guage and GPU backends.
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Figure 3: Simplified UML diagram containing the static operator classes on Fortran
and C++ layers and their interoperability.

GPU OFFLOADING STATUS
The arithmetic operators are experimented on to show the com-
patibility of the C++ layer to various GPU offload backends, i.e.
OpenACC, OpenMP offload and CUDA.

The directive-based backend, i.e. OpenACC, is prioritized due
to the multidimensional array of the distribution function.

The following are the compiler combinations used on MPCDF
machines (Cobra and Raven):
• Fortran: GNU compiler (gfortran)
• C++: NVIDIA HPC SDK compiler (nvc++)
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Figure 4: GPU offloading status of GENE-X. Top: The status
of various GPU backend supports of the Arithmetic
operators, the porting status of various operators and
infrastructures.

CONCLUSION AND OUTLOOK
GENE-X build configuration now supports Fortran/C++ hybrid
model with mainly OpenACC and OpenMP offload as GPU
backend. The directive-based approach is chosen due to main-
tainability factor and good affinity with the numerics of GENE-X.
Here, the preliminary performance monitoring of the static and
dynamic operators of gyrokinetic Vlasov equation are presented
and showing promising speedups. Next milestones are:
• Multi-GPU implementation
• Latency analysis
• Kernel optimization
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PRELIMINARY BENCHMARK
RESULTS
The preliminary benchmark of the static and dynamic operators
is done in one GPU node of MPCDF machine called Raven
with the following specifications:

MPCDF Cobra GPU partition: 1 node, 1 out of 2 GPUs
• 20 CPU cores: 1 Intel Xeon Gold Skylake 6148
• 1 GPU: NVIDIA V100, 32GB HBM2

Distribution function: 105,012,224 points in total

Number of points in RZ = 205,102
Number of points in ϕ = 16
Number of points in v∥ = 4
Number of points in µ = 4

Number of species = 2
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Figure 5: Top: Preliminary wall time measurements of the ap-
ply procedure of the static (left) and dynamic (right)
operators. Bottom: Speedups compared to Fortran
and C++ wall time.

Performance difference between OpenACC and OpenMP of-
fload is yet to be investigated. OpenMP kernels on C++ indi-
cates possible rooms of improvement to OpenMP parallelism
in GENE-X Fortran kernels

Problem size (in points) in various MCF devices
● TCV ∼ 1010 ● AUG ∼ 1011 ● ITER ∼ 1013


