
Added technical aspects of p4est:
Alternative quadrant representation
and MPI-3 shared memory

Mikhail Kirilin, Carsten Burstedde
University of Bonn, Germany

Introduction
Many numerical simulations requires
a mesh of computational cells cover-
ing the domain of interest. The so-
lution is approximated by functions
associated with a set of cells.

• Implementation: the p4est software library
• Dynamic management of adaptive octrees
• Discretization of a computational domain
• Efficiently manages large-scale parallel tasks

p4est new

p4est refine

p4est coarsen p4est balance p4est partition

Typical workflow of the p4est software library.

The p4est library is actively used worldwide: linked e.g. by solver libraries deal.ii, PETSc,
ForestClaw. Some possible applications: continuum mechanics and particle simulation.

A representation of a refined mesh built by
p4est within ForestClaw1 on a torus.

Modelled advection problem per-
formed by ForestClaw1 solver.

Alternative quadrant representations

Cells as quadrants
p4est represents cells with 2D squares (3D cubes) which
we call quadrants (octants). Their characterization:

• Defined by the coordinates of a corner and a level.
• It is allowed for them to be of various sizes.
• Store user’s information depending on application.

?

1Per-quadrant operations are listed in the original paper on p4est [1] and the source code.

Implementation of Parent algorithm, constructing parent
r of the 128-bit quadrant q. Written with use AVX/SSE.

Some quadrant properties:
• Form a disjoint union

of all leaves in a forest.
• Partitioned btw. MPI

processes by space fill-
ing curve (SFC) order.

• SFC is aka Morton or
Z-curve [2, 3].

• Quadrants can be set
by ` and either (x,y,z)
or Morton index id.

Since an octant is defined by x, y, z and `, we consider four-way
SIMD (Single Instruction Multiple Data) for accelerated pro-
cessing. We base new quadrant representation on the Advanced
Vector Extensions/Streaming SIMD Extensions (AVX/SSE).


x = 0 x0 x1 x2 ... x30

y = 0 y0 y1 y2 ... y30

z = 0 z0 z1 z2 ... z30

level = 0 ... 0 l0 l1 ... l7

l7 l6 ... 0 z30 ... z0 0 y30 ... y0 0 x30 ... x0 0

These intrinsics operate on extended processor registers. Specifically, we chose the special
SSE2 type m128i, that stores 128 bits of data interpreted as signed integers.

Shared memory algorithm: Partition

The Partition algorithm for redistributing work-load guarantees similar amounts of work
for all computation nodes. Current version of the Partition, as published in [1] and [4],
asynchronously sends and receives the data. We aim to eliminate the redundancy of the
sends within each node with shared memory (SM) windows introduced in MPI 3.0.

Distribution before and
after Partition.

Mesh state before Partition.
————————————————————

ISend

IRecv

Classical Partition [1].
————————————————————

Co
py

Partition over non-contiguous shared memory.
————————————————————

Move offset

Partition over contiguous shared memory.

We use the following notation:
• N global and Np local to process p

number of quadrants in a forest.
• Element offsets Op: Op+1−Op = Np.

Highlights of approaches for Partition:
• In each case we calculate new offsets

O′p to define new boundaries on SFC.
• Classical Partition relies on asyn-

chronous ISend and IRecv calls.
• With MPI-3 we allocate new SM and

perform simply copying into it.
• Contiguous shared memory allows

reassigning new element offsets O′p.

Communication
channel

NUMA Node 0

M
em

o
ry C1 C2

C3 C4

Interconnect

NUMA Node 1

C1 C2

C3 C4 M
em

o
ry

Rack 0

NUMA Node 0

M
em

o
ry C1 C2

C3 C4

Interconnect

NUMA Node 1

C1 C2

C3 C4 M
em

o
ry

Rack 1

1

Partition: numerical results

We run mesh partition test for various combinations of algorithm and quadrant implemen-
tations. The performance scalability was tested on a desktop PC with up to 36 physical
cores split between two sockets. We modeled an unbalanced mesh with approximately 3
million quadrants per core shipping 80% of them, which is equal to sending 2.5 GB of data.

0.016

0.03

0.06

0.13

0.25

0.5

1

2

4

 2 4 8 16 32

R
un

ti
m

e
in

 S
ec

on
ds

Number of Processes

Shared memory partition performance

P4est2
Classical \ Non-cont
Classical \ Cont
AVX \ Non-cont
AVX \ Cont
Morton id \ Non-cont
Morton id \ Cont

Conclusions and highlights:
• Quadrants with Morton in-

dex id demonstrate the
fastest results over others.

• BUT contribute to changes
of quadrant bit operations.

• Contiguous shared memory
shows better performance
over non-contigious.

• We consider the pair of
AVX/contiguous as a ma-
jor user’s selection.

References

[1] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. p4est: Scal-
able algorithms for parallel adaptive mesh refinement on forests of oc-
trees. SIAM Journal on Scientific Computing, 33(3):1103–1133, 2011.

[2] G. M. Morton. A computer oriented geodetic data base; and a new
technique in file sequencing. Technical report, IBM Ltd., 1966.

[3] Herbert Tropf and H. Herzog. Multidimensional range search in dy-
namically balanced trees. Angewandte Informatik, 2:71–77, 1981.

[4] Hari Sundar, George Biros, Carsten Burstedde, Johann Rudi, Omar
Ghattas, and Georg Stadler. Parallel geometric-algebraic multigrid
on unstructured forests of octrees. In SC12: Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, 2012.

2023 University of Bonn, Hausdorff Center for Mathematics, Institute for Numerical Simulation.
This work is supported by a scholarship of the German Academic Exchange Service (DAAD).
kirilin@ins.uni-bonn.de

1Pictures courtesy Donna Calhoun, Boise State University.

mailto:kirilin@ins.uni-bonn.de

