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Introduction

Many numerical simulations requires e Implementation: the p4est software library
a mesh of computational cells cover-
ing the domain of interest. The so-
lution is approximated by functions

associated with a set of cells.
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o Dynamic management of adaptive octrees
o Discretization of a computational domain
o Efficiently manages large-scale parallel tasks

p4est_partition

Typical workflow of the pdest software library.

The pdest library is actively used worldwide: linked e.g. by solver libraries deal.ii, PETSc,
ForestClaw. Some possible applications: continuum mechanics and particle simulation.
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Modelled advection problem per-
formed by ForestClaw! solver.

A representation of a refined mesh built by
pdest within ForestClaWD on a torus.
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Cells as quadrants
p4est represents cells with 2D squares (3D cubes) which
we call quadrants (octants). Their characterization:
e Defined by the coordinates of a corner and a level.
o It is allowed for them to be of various sizes.
o Store user’s information depending on application.

Per-quadrant operations are listed in the original paper on pdest [1] and the source code.

Some quadrant properties:
o Form a disjoint union
of all leaves in a forest.

o Partitioned btw. MPI
processes by space fill-
ing curve (SFC) order.

o SFC is aka Morton or
Z-curve [2, 3.
e Quadrants can be set

by ¢ and either (z,y,2)
or Morton index id.

*r-=-_mm sub epi32 (
~mm_and sil28 (*q, mm set epi32
(~QUAD LEN (level)
, ~QUAD LEN (level)
, ~QUAD LEN (level)
, OXFFFFFFFF))
, _mm set epi32 (0, 0, 0, 1));

Implementation of Parent algorithm, constructing parent
r of the 128-bit quadrant q. Written with use AVX/SSE.

Since an octant is defined by z, y, z and ¢, we consider four-way (.
SIMD (Single Instruction Multiple Data) for accelerated pro-
cessing. We base new quadrant representation on the Advanced

Vector Extensions/Streaming SIMD Extensions (AVX /SSE). :
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These intrinsics operate on extended processor registers. Specifically, we chose the special
SSE2 type -.m128i, that stores 128 bits of data interpreted as signed integers.

Shared memory algorithm: Partition

The Partition algorithm for redistributing work-load guarantees similar amounts of work
for all computation nodes. Current version of the Partition, as published in [1] and [4],
asynchronously sends and receives the data. We aim to eliminate the redundancy of the
sends within each node with shared memory (SM) windows introduced in MPI 3.0.
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Mesh state before Partition.
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Classical Partition [I].
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Partition over non-contiguous shared memory.
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Partition over contiguous shared memory.

Distribution before and
after Partition.

We use the following notation:
o N global and N, local to process p
number of quadrants in a forest.
o Element offsets O,: Op11 —0O, = N,
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Highlights of approaches for Partition: | ® @ @ s
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e In each case we calculate new offsets - M
O, to define new boundaries on SFC. e
o Classical Partition relies on asyn- o
chronous ISend and IRecv calls. ...NUMA Node 0 _...NUMA Node 1
o With MPI-3 we allocate new SM and g QD N OD g
perform simply copying into it. 5 B
+ Contiguous shared memory alows | Nl BGa, (GG |

reassigning new element offsets 0219'

Partition: numerical results

We run mesh partition test for various combinations of algorithm and quadrant implemen-
tations. The performance scalability was tested on a desktop PC with up to 36 physical
cores split between two sockets. We modeled an unbalanced mesh with approximately 3
million quadrants per core shipping 80% of them, which is equal to sending 2.5 GB of data.

Shared memory partition performance
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Conclusions and highlights:
e Quadrants with Morton in-
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of quadrant bit operations.
« Contiguous shared memory
shows better performance
over non-contigious.
« We consider the pair of
AVX/contiguous as a ma-
jor user’s selection.
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