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Introduction Results
• High-purity germanium (HPGe) p-type point contact (PPC) detectors are used for rare event searches, 

such as neutrinoless double-beta decay and other beyond Standard Model physics
• Spherical proportional counter (SPC) detectors are another technology for low-energy physics 

experiments, primarily used for dark matter searches
• Detecting rare event interactions will ultimately help us to better understand the Universe
• Due to the infrequent nature of signal events, backgrounds dominate over interactions of interest
• Electronic noise presents further challenges in distinguishing and rejecting background events
• Further analytical techniques are required to extract information from modern experiments

• We primarily explore deep neural networks to remove noise from detector signals

Background

Deep Learning on Particle Detector Signals
• Denoising using machine learning offers numerous potential benefits

• Reduction in the energy resolution
• Identification of low-energy signal events masked by electronic noise
• Improved background rejection techniques based on signal characteristics
• Fast processing once model is trained; scalable to constant influx of detector data

• Technique can be extended to other experiments and beyond denoising
• Utilization of latent representation of pulses for other classification tasks
• Extendable to other problems including generating “fake” data
• Applicable to a broad range of detector technologies and 1D electronic signals

The Convolutional Autoencoder

Our studies have uncovered new avenues for advancing this research, with a focus on two key areas: 
CycleGAN-based denoising and inline detector denoising. Below is a summary of our initial investigations 
and an outline for future possibilities for research in these two directions. 

Future Work

HPGe PPC Detector

SPC Detector

HPGe PPC Detector

SPC Detector

CycleGAN

Inline Detector Denoising
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• Interactions disturb charge carriers 
in the detector medium

• These charge carriers are collected 
and converted to a voltage

• Result is a short 1D pulse (~30μs)
• Shape is dependent on type of event 

and its position in the detector
• Multiple interactions from same 

particle produce multiple “bumps”
• Data collected continuously at 

125MHz with a 16-bit digitizer
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Results on simulated data:
• Improvements in the overall energy 

resolution at all noise levels
• Superior denoising over traditional 

methods from mean squared error 
and SSIM comparisons (not shown)

Results on real detector data:
• Better statistical agreement between 

noisy and denoised pulses than best fit 
simulated “library” pulse via χ2 fit

• Improvements in energy resolution 
under some circumstances (not shown)
• Less substantial than expected from 

simulations due to unmodelled 
effects in real data that are not 
present in training data

Comparison to traditional noise removal methods:
• Tested 4 standard digital noise removal methods on SPC pulses
• Neural network denoising improves on traditional approaches 

by ~2 orders of magnitude

Qualitatively, the autoencoder 
does well on simulated data 

with detector noise

• Developed a flexible convolutional autoencoder to 
remove electronic noise [1]
• An autoencoder maps its input back to its input
• Internal constraint is used to ensure only the most 

important parts of the data are encoded
• Objective to remove noise is made explicit by forcing 

it to reconstruct clean signal from noisy input
• Applied it to signals from detectors described above

Procedure
Sources of data for training and validation
• Simulated clean pulses corresponding to points in detector
• Calibration sources with known energy distributions
• Pure detector noise (for data augmentation)

Data preprocessing procedure (real detector data)
• Remove baseline
• Remove exponential decay with pole zero correction
• Scale to have amplitude of unity (trapezoidal filter)

Data augmentation procedure (simulations)
• Combine simulated pulses to create artificial events
• Apply random horizontal and vertical shifts, amplitude scales
• Add detector noise with random standard deviation

• Architecture is fully convolutional
• Weight sharing provides consistent noise removal
• Emphasizes feature locality and shift equivariance
• Significant reduction in trainable parameters
• Allows for a variable input shape (with some restrictions)

𝑥 simulated clean pulse

𝑥 simulated pulse with added detector noise

𝑦 encoded/latent representation

𝑧 reconstructed output
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• SPC detectors use spherically contained noble gasses as 
detector medium for low-energy physics

• Particles interact and deposit energy within the gas
• Ionized electrons drift through the detector’s electric field 

towards the central sensor (primary ionization)
• Electrons gain enough energy to trigger secondary 

ionizations, severely amplifying the signal
• Voltage sampled frequently to produce a ~4ms 1D pulse
• Data collected continuously at 1MHz with a 16-bit digitizer

Energy measurement results:
• Compared energy measurements on standard and denoised 

events to energy measurements on clean events
• Energy measurements on denoised events are more consistent 

and better model energy measurements on clean events
• Supports argument that noise removal tends to create an event 

more like a clean pulse

• Used to transfer elements between two 
corresponding domains, our CycleGAN learns to 
transfer physics events between the ‘noisy’ and 
‘clean’ domains

• By implementing the denoising model prior to the event 
triggering system, the triggering threshold can be 
lowered (as electronic noise is reduced)
• Signals dominated by noise can be identified/recorded, 

improving sensitivity to low-energy rare event searches
• Will need to denoise considerable amounts of data

• ~2Gb/s for HPGe PPC detectors
• ~16Mb/s for SPC detectors

• This system could be extended to actively learn, allowing 
for a denoising system that could be transferred to 
different detectors/applications

Training procedures
• Regular procedure maps noisy pulse to its clean progenitor
• Also developed/applied two methods that do not require detailed simulations of the detector [1]

• One method, Noise2Noise [4], maps noisy pulse to another noisy pulse (same underlying trace)
• Very similar performance to regular training procedure on simulations and data

• CycleGAN architectures offer a unique way to 
train denoising neural networks
• Does not require corresponding clean and 

noisy training pairs, avoiding linear noise 
assumptions

• CycleGAN systems use two generative and 
discriminator models that learn adversarially and 
to fool one another
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