ueens Denoising Electronic Signals from Particle Detectors
using a Flexible Deep Convolutional Autoencoder
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« High-purity germanium (HPGe) p-type point contact (PPC) detectors are used for rare event searches, HPGe PPC Detector e
such as neutrinoless double-beta decay and other beyond Standard Model physics T s g e

« Spherical proportional counter (SPC) detectors are another technology for low-energy physics
experiments, primarily used for dark matter searches
« Detecting rare event interactions will ultimately help us to better understand the Universe
« Due to the infrequent nature of signal events, backgrounds dominate over interactions of interest
 Electronic noise presents further challenges in distinguishing and rejecting background events
« Further analytical techniques are required to extract information from modern experiments
« We primarily explore deep neural networks to remove noise from detector signals

Results on simulated data:

« Improvements in the overall energy
resolution at all noise levels

« Superior denoising over traditional\
methods from mean squared error
and SSIM comparisons (not shown)
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« Shape is dependent on type of event .
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] particle produce multiple “bumps” 0 10 20 30 Comparison to traditional noise removal methods:
- Data collected continuously at Time (us) « Tested 4 standard digital noise removal methods on SPC pulses 3
125MHz with a 16-bit digitizer  Neural network denoising improves on traditional approaches 2
by ~2 orders of magnitude
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T Energy measurement results: I ——
« SPC detectors use spherically contained noble gasses as « Compared energy measurements on standard and denoised Average Golay  Network
detector medium for low-energy physics o events to energy measurements on clean events ——
 Particles interact and deposit energy within the gas . « Energy measurements on denoised events are more consistent 9 — ?lii!ylfe‘ﬂsfmse
- lonized electrons drift through the detector’s electric field and better model energy measurements on clean events o 20
towards the central sensor (primary ionization) 10 « Supports argument that noise removal tends to create an event =
 Electrons gain enough energy to trigger secondary more like a clean pulse <
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« Technique can be extended to other experiments and beyond denoising
- Utilization of latent representation of pulses for other classification tasks
- Extendable to other problems including generating “fake” data
« Applicable to a broad range of detector technologies and 1D electronic signals

Our studies have uncovered new avenues for advancing this research, with a focus on two key areas:
CycleGAN-based denoising and inline detector denoising. Below is a summary of our initial investigations
and an outline for future possibilities for research in these two directions.
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important parts of the data are encoded
« Objective to remove noise is made explicit by forcing
it to reconstruct clean signal from noisy input
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 Allows for a variable input shape (with some restrictions) (3]
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