ETHzurich

% GridTools % C5C8

python |V

Swiss National Supercomputing Centre

GT4Py: A Python Framework for the Development of High-Performance Weather and

Climate Applications

M. Bianco?, T. Ehrengruber?!, N. Farabullini?, A. Gopal?, L. Groner?!, R. Hauselmann?, P. Kardos?, S. Kellerhals?, M. Luz?, C.
Muller3, E. G. Paredes?!, M. Roethlin3, F. Thaler?, H. Vogt?, B. Weber3, T. Schulthess!4

1 Swiss National Supercomputing Center, CSCS “Institute for Atmospheric and Climate Science, ETH Zurich
3 Federal Office of Meteorology and Climatology, MeteoSwiss “#Institute for Theoretical Physics, ETH Zurich

Introduction

GT4Py 1s a Python framework for weather and climate
applications simplifying the development and maintenance of
high-performance codes in prototyping and production
environments. GT4Py separates model development from
hardware architecture dependent optimizations, instead of
Intermixing both together in source code, as regularly done in
lower-level languages like Fortran, C, or C++.

Domain scientists focus solely on numerical modeling using a
declarative embedded domain specific language (DSL)
supporting common computational patterns of dynamical
cores and physical parametrizations. An optimizing toolchain
then transforms this high-level representation into a finely-
tuned implementation for the target hardware architecture.
This separation of concerns allows performance engineers to
Implement new optimizations or support new hardware
architectures without requiring changes to the application,
Increasing productivity for domain scientists and performance
engineers alike.

Fields

Inspired by the concept of a field in physics the central agnostic allowing domain scientists to use existing
datastructure used in GT4Py is a Field. A field maps a infrastructure and libraries (e.g. ATLAS, ICON) to
position in the form of a tuple of indices to a value or generate meshes.

composite, e.g. tuple, thereof. |
P 5. TP vertex field (E2V[0])

7 8 9
46 23 3.2
4 g
1 2 3 4.6
Position Value
(tuple of indices)
Field|[[Vertex], float] Neighbor reductions
In case of a variable number of neighboring positions, a

Remap operation set of neighbor reductions (e.g. sum, maximum,

Aside from regular arithmetic and trigonometric minimum) can be used.
operations, fields can be remapped in order to obtain a | | |
new field defined on a different domain of neighboring ~ neighbor sum(flux(VZE), axis=VzEDim)

positions (e.g. from Vertices to Edges). GT4Py is mesh

Programs & Operators

Program (Cprogram) Field operator (¢ field operator) Scan operator (¢scan operator)

A program is a sequence of (stateful) operator calls Covering most patterns of explicit finite-difference and Scan operators are useful for expressing computations
transforming the input arguments and writing back the finite-volume discretizations multiple field operations can with dependencies across an entire dimension, which
return value to a specified output field. be grouped together into a field operator. commonly occur in implicit solvers and physical

dprogram (backend=...)

def programl (inpl: AnyField, outl: AnyField, outZ2: AnyField):
operatorl (1npl, out=outl)
operatorZ (inpl, out=out2?)

By selecting a different backend users can switch to a Field operators are composable, allowing the description
different hardware architecture (e.g. GPUs) with the of high-level operators from basic building blocks.

change of a single line.

@field operator
def laplap(u: Field[[I, J], float]) -> Field[[I, J], float]:

@field operator
def edge average (vertex field: Field[[Vertex], float])
-> Field[[Edge], float]:
return 0.5* (vertex field(E2V[0]) +vertex field(E2V[1]))

parametrizations. The output from the previous level (i.e.,
k+1 or k-1, depending on the direction) is used by a

scalar function to derive a new value for the current grid
point, iteratively building up a complete field.

@scan operator (axis=KDim, forward=True, init=0.0)
def simple scan operator (

carry: float, current value: float
) —> float:

return carry + current value

return lap(lap(u))

simple scan operator (inp field, out=out)

Toolchain
Parsing Lowéring Code ge.neration Compilation I
Backend lift inliner
| GTFN CPU i > C++ . l -
Python ; Frontend ; function inliner
: | |
i GTFN GPU —> CUDA C++ X
@program : PAST ! (local) map fusion
_ | Python Cjél'ael(a:ie |
@field_operator i FOAST J global temporary extraction
e imizat Crt
: common subexpression elimination
function inliner
Embedded execution l

optimized
ITIR

@ @ @ o
Example - Upwind advection scheme Projects using GT4Py
| ECMWF develops the non-hydrostatic FVM dynamical core using
ap , , @field operator GT4Py. A new high-performance distributed model on Cartesian
a + V. (pv) — 0 on (Advectlon equatlon) def advection scheme upwind grids and an LES configuration are already implemented and

@field operator
def upstream flux(
rho: Field[[Vertex], float],
vel: tuple[Field[[Edge], float], Field[[Edge], floatl]],
dual face normal: tuple[Field[[Edge], float], Field[[Edge], floatl]],
dual face length: Field[[Edge], float]
) -> Field[[Edge], float]:
normal velocity = vel[0] * dual face normal[0] \
+ vel[l] * dual face normall[l]
return where (normal velocity > 0.0, rho(E2V[0]), rho(E2V[1])) \

* normal velocity * dual face length

available for research in the PASC project KILOS (cf. poster
Ubbiali et al. and Krieger et al.). The global model operating on
dt: float, the quasi-uniform ECMWF octahedral grid is currently under
development with the declarative GT4Py.

The EXCLAIM project is developing an exascale computing and
vol: Field[[Vertex], float], data platform for weather and climate modelling based on the
ICOsahedral Nonhydrostatic Model (ICON) system. The second

version of GT4Py is used to replace the currently Fortran-based
dual face normal: tuple[Field[[Edge], float], Field[[Edge], float]], model components (cf. poster Miiller et al.).

rho: Field[[Vertex], float],

vel: tuple[Field[[Vertex], float], Field[[Vertex], floatl]],

dual face orientation: Field[[Vertex, V2EDim], float],

dual face length: Field[[Edge], float]

) —> Field[[Vertex], float]:

References

flux = upwind flux(rho, vel, dual face normal, dual face length)

return rho - (dt / vol) * neighbor sum/(
o « Afanasyev et al. (2021). GridTools: A framework for portable weather and
flux (V2E) * dual face orientation, axis=V2Z2EDim) climate applications. SoftwareX, 15.

« Ben-Nun, T, et al. (2022). Productive performance engineering for weather
and climate modeling with Python. SC '22: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis.

* GT4Py - GridTools for Python: https://github.com/GridTools/gt4py

« DaCe - Data-Centric Parallel Programming: https://github.com/spcl/dace

https://confluence.ecmwf.int/display/ATLAS
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
https://github.com/GridTools/gt4py
https://github.com/spcl/dace

	Folie 1: GT4Py: A Python Framework for the Development of High-Performance Weather and Climate Applications M. Bianco1, T. Ehrengruber1, N. Farabullini2, A. Gopal2, L. Groner1, R. Häuselmann1, P. Kardos2, S. Kellerhals2, M. Luz2, C. Müller3, E. G. Parede

