Parallel second order conservative remapping on the sphere
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We present an implementation of a conservative 1s/2nd interpolation between arbitrary
spherical meshes with convex elements, in particular meshes used by IFS model:
structured grids such as octahedral or reduced Gaussian grids of IFS, quasi-structured
grids such as ORCA of NEMO and FESOMZ2, or fully unstructured grids. For his work

Given a source and a target mesh, with a domain decomposition of a target mesh, we
use Atlas’ MatchingPartitioner to create a domain decomposition on the source mesh with
the property that every target polygon on one MPI-partition is entirely covered by source
polygons from the same MPI-partition.
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Source mesh resolution

CubedSphere grid CS-LFR-8 to a much higher resolution O256. The imprinting of a lower
resolution into O256 is clearly visible in case of the 1st order. The advantage of the 2nd
order is substantial for source meshes of lower resolution to the target mesh as seen in
Fig. 5.

Fig. 5. A MPI-scaling of specific components of the Atlas’ conservative
remapping for node(O1280) - cell(H640).

Fig. 6. Remapping 0O4,..., 01024
to N1024
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We start off with a cell-centred orographic data on regular latitude-longitude grid 43200 x
21600 to be remapped to ECMWF's operational O1280 and higher. We measured
efficiency in CPU time and memory requirements in the table below.
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Fig 1. The idea of delegating conservative remapping from nodes to polygons on a source mesh and back on a target
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Fig 2. A staggered 1s42"d remapping for node-to-cell and cell-to-node. Other combinations, such as node-to-node are
possible as well (not shown). 2000 |
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The new parallel 2" order conservative remapping has a potential in a wide range of
application at ECMWEF, for instance projection IFS data to a very high resolution grids in
Fig. 3.

Kathmandu

IFS data 06/09/22
specific humidity
01280

node-data

vert. level 114

ons. Remap.
Nodes -> Cells

128 processes
n Atos

30°N

H640
cell-data

tgt_field
0 0.00188 0.00376 0.00564 0.00752 0.0094
I

_c ECMWF EUROPEAN CENTRE FOR M

0.0113  0.0132 0.015 0.0169  0.0188

Fig 7. Remapping of regular lat-lon cell data on 43200 x 21600 to the node data on O1280 (in the second row) and
04000 (in the third row). The efficacy of the Atlas’ conservative remapping is snow in cross-sectional —lots in the
first row. Left column are data over Himalaya, the right column are data over Alps.

Fig. 3. (UP) Parallel
higher order projection
of IFS reanalysis data

1st vs 2nd order efficiency: Time gain (t2/t1) (x-axis) - Error gain (el/e2) (y-axis)
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We are very thankful to Birgit Suezl for preparing the Python visualisation script for
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