Exascale supercomputers’ high performance allows climate simulations to target high-resolution simulations (e.g. 2.5 km) for longer simulation times.

But heterogeneous hardware architectures (CPU+GPU, vector systems, ...) are a challenge for scientific software development.

WarmWorld is a German national project that aims to use advances in information technology to compute and evaluate climate warming trajectories.

Target Global Objectives
1. Enable portable performance improvement with scalable development
2. Free, Open Source, refactored ICON for scalable development
3. Over 0.5 simulated years per day (SYPD) on ≤ 2.5km grid

Exascale supercomputers’

Heterogeneous hardware architectures

WarmWorld Faster

Challenges of Language Interoperability

- The memory manager has to register various fields
- Many ICON components touch the fields
- Most vendors are C++ based while ICON is Fortran based (Kokkos, RAJA, ...)
- Fortran - C++ interface is not fully supported

Opportunities

- Modularize the code
- Easy extension
- Favor reusing existing building blocks
- Better GPU support for a C++ front end than the legacy fortran code

![Fortran Component](image1.png)

Composable

Interoperable

Modular Design

Scalable

Performance

Development

Memory Manager Design

Idiomatic interface, e.g. Fortran

```fortran
interface
  function register_real32(ctx, desc_c, & num_elem) &
  & result(err) bind(c)
  & end function register_real32
end interface
contains
  function register(ctx_id, desc, & kind, num_elem) &
  & result(err)
  & end function
select case(kind)
  err = register_real32(get_ctx(ctx_id), & to_c_desc(desc), & int(num_elem, & kind=c_int))
  & end select
end function
```

C for ABI

```c
struct ctx;
struct var_descriptor;
int register_real32(struct ctx* device, struct var_descriptor* desc, const size_t num_elem);
```

Towards sustainable software development of the ICON Climate and Weather Prediction Model

Leveraging the memory-manager for sustainable development

Integrating the memory-manager within the ICON climate and weather prediction model allows to bring sustainable development and to introduce further optimizations:
1. Iterative modularization to generate independent model components
2. Well-defined interfaces allows to replace components by e.g. vendor-optimized code or third-party components
3. Allows easy serialization of data, eases component testing
4. Abstraction allows reuse by other projects
5. Towards a data-driven control flow of the ICON code base