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Because of the computational demands, many weather centers use a 

reduced spatial grid (fig. 1) and reduced temporal frequency for 

radiative transfer calculations in their forecast models.

In this project, we contribute to the discussion on how to incorporate 

physical constraints into an ML-based radiative parameterization, 

whether to predict radiative flux or its convergence (i.e. heating rates), 

and how different neural network (NN) designs (MLP, Unet (fig. 2)) and 

input features normalization affect prediction performance. 

A random forest (RF) is used as a baseline method, with ECMWF 

model ecRad, the operational radiation in the ICON climate model, used 

for training. The RF is not affected by the top-of-atmosphere (TOA) bias 

found in all NNs tested. At lower atmospheric levels, the RF is able to 

compete with the NNs, but its memory requirements become prohibitive. 

For a fixed memory size, most NNs outperform the RF except at TOA. 

Introducing physical constraints into ML design by penalizing the NNs 

via heating rates seems promising.

MAE in the fluxes and heating rates:

5 Results and outlook

4 Physics-informed loss functions
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1 Introduction

Physics informed loss function:

1)   Total column energy absorbed penalty: 

2)   Heating rates penalty:

3)   Height dependent heating rates penalty:
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3 Random Forest normalization

Output normalization:

We divide the shortwave

fluxes by 𝒄𝒐𝒔 𝜽 .

Shortwave prediction without normalization: 

We observe discrete

patterns in the error due 

to the piecewise constant 

structure of the RF.

Observation:

1)   For the total column energy

absorbed penalty             , the 

MLP learns to modify the top 

and bottom fluxes predictions to 

satisfy the additional penalty. 

This causes large heating rates 

MAE at the TOA and surface.

2)   We observe a large MAE at 

the tropopause for the MLP with

HR penalty             and             .

3)   The random forest

outperforms all NNs at the ToA

for the heating rates predictions.

4)   The model we recommend

is the UNet with height

dependent heating rates 

penalty. It has neither an error

kink at the tropopause nor a 

large jump in the error at the 

TOA. It is extremely accurate at 

all heights for both the fluxes 

and heating rates prediction. 

Computational grid for the radiation in ICON (fig. 1)
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UNet architecture (fig. 2)
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2 Random Forest size limitations

Mean Absolute Error (MAE) of the RF against its size in MB: 

The RF can compete with NNs but its size in MB 

becomes prohibitive

Physics informed penalty:

with normalization: 
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Next step:

Online performance

𝜃: solar zenith angle

𝛼ℎ = average height in km at atmospheric level h


