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Motivation and Contributions

Neural network (NN) based reduced-order models (ROMs) via autoencoding have
been shown to drastically accelerate traditional computational fluid dynamics (CFD)
simulations for rapid design optimization and prediction of fluid flows. However, to
extend these models to practical engineering problems, two key limitations must be
addressed: latent space interpretability and compatibility with unstructured meshes.
This is accomplished here with the development of a novel graph neural network
(GNN) autoencoding architecture with demonstrations on complex fluid flow
applications. The specific contributions are as follows:

Configuration and Dataset

The GNN is demonstrated on a dataset
derived from 2D simulations of unsteady,
iIncompressible flow over a backward-
facing step using OpenFOAM at Reynolds
numbers in the range of 20,000 to 45,000.
Input graph node features correspond to
time-evolving streamwise and vertical
velocity components.
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* To address the goal of interpretability, the GNN autoencoder achieves
compression through an adaptive graph reduction procedure. The reduction step
amounts to flowfield-conditioned node sampling, and produces latent graphs that
(a) are visualizable in physical space, and (b) have connectivities that evolve in
time with unsteady flow features.

e To address the goal of unstructured mesh compatibility, the autoencoding
architecture utilizes a series of multi-scale message passing (MMP) layers, each
of which models information exchange among node neighborhoods at various
lengthscales.
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Results and Demonstration
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GNN architecture: The architecture consists of an encoder and decoder, utilizing a O
combination of multiscale message passing layers, graph pooling layers, and graph I=
unpooling layers. Graph pooling operation produces a interpretable latent graph. %
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¥ The encoder creates a latent graph with reduced degrees-of-freedom using a node
g sub-sampling process. Latent graph connectivities evolve In time and generate
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Z masked fields that can be visualized in physical space. In the decoding process,
Input Graph Latent Output Graph information in the masked region (latent graph) is used to reconstruct the flow on the
Graph original graph. Multiscale GNN operations allow for more accurate

Graph generation and message passing: An input graph is extracted from a CFD
mesh using a finite volume interpretation: nodes represent values at cell centers, and
edges represent connections that intersect faces (flux paths). Message passing layers
learn how to distribute information over nodes using the edge features.

Message Passing Block
(Battaglia et al., arXiv 2018)

1) Edge feature update
el:]' :fe(elj, Vl’ V]) — Edge-Wise MLP
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2) Edge aggregation

Neighborhood
summation

3) Node feature update
Vv, =/"(€;,V;) —> Node-wise MLP

Initial node features: flow variables at centroid
Initial edge features: distance vectors
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Top-K Pooling: A subset of K X
nodes is sampled from the input N N N
graph consisting of N nodes, such — L]
that K < N. In a first step, a learned O Q — =
projection vector is applied to the 3 X S [Kx1]
N nodes in feature space. In a X 2 =
second step, the nodes are ranked, 0. -
and only the highest K values are Sampled
retained. Introduced by Gao and L1 node
(ICML 2019). IN x F] INx1] [Nx1] | indices

Sampled nodes adapt to input graph (latent node positions can change)

Reference: Barwey, S., Shankar, V. Viswanathan, V., and Maulik, R., 2023. Multiscale
Graph Neural Network Autoencoders for Interpretable Scientific Machine
Learning. arXiv preprint arXiv:2302.06186.

reconstructions.

Masked Fields
(Latent Graphs)

0,1 2
Level Index

Next Steps

This work demonstrates a novel
pathway for interpretable model
development using graph-based
autoencoders and adaptive pooling
strategies. Next steps include (1) using
the latent representations produced by
the autoencoder presented here to
develop a prognostic ROM, and (2)
scaling up GNN evaluations using
graph partitioning strategies.
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