
Towards a Python-Based Performance-Portable Finite-Volume
Dynamical Core for Numerical Weather Prediction

S. Ubbiali1, T. Ehrengruber2, N. Krieger1, C. Kühnlein3, L. Papritz1, H. Wernli1

1 Institute for Atmospheric and Climate Science (IAC), ETH Zürich, Switzerland
2 Swiss National Supercomputing Center (CSCS), Lugano, Switzerland

3 European Centre for Medium-Range Weather Forecasts (ECMWF), Bonn, Germany

● In the context of the PASC project KILOS (“Kilometer-scale non-hydrostatic
global weather prediction with IFS-FVM”; pasc-ch.org/projects/2021-2024/kilos),
we present recent progress in the development of a Python implementation of
the FVM dynamical core (Kühnlein et al. 2019, Smolarkiewicz et al. 2014).

● The primary goal of the KILOS project is establishing the FVM as a flexible
weather and climate research tool at the Institute for Atmospheric and Climate
Science (IAC) of ETH Zurich.

● FVM solves the fully compressible equations using 3D semi-implicit integration
and conservative finite-volume non-oscillatory advection. The model provides
very competitive time-to-solution but at the same time maps well onto modern
computing architectures.

● The Python implementation of FVM is designed
to attain high performance on multiple platforms
by encoding stencil computations using the
domain specific library (DSL)
(GT4Py; github.com/GridTools/gt4py).

1. Introduction

4. GT4Py Porting of ECMWF Physics 5. References
Afanasyev, A., et al. (2021). GridTools: A framework for portable weather and
climate applications. SoftwareX, 15, 100707.

Ben-Nun, T., et al. (2022). Productive performance engineering for weather and
climate modeling with Python. In SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis (pp. 1-14). IEEE.
Kühnlein, C., et al. (2019). FVM 1.0: a nonhydrostatic finite-volume dynamical
core for the IFS. Geoscientific Model Development, 12(2), 651-676.

Kühnlein, C., et al. (2023). ECMWF collaborates with Swiss partners on GPU
porting of FVM dynamical core. ECMWF Newsletter 175.

Müller, A., et al. (2019). The ESCAPE project: energy-efficient scalable
algorithms for weather prediction at exascale. Geoscientific Model Development,
12(10), 4425-4441.

Smolarkiewicz, P. K., et al. (2014). A consistent framework for discrete
integrations of soundproof and compressible PDEs of atmospheric dynamics.
Journal of Computational Physics, 263, 185-205.
Ullrich, P. A., et al. (2014). A proposed baroclinic wave test case for deep-and
shallow-atmosphere dynamical cores. Quarterly Journal of the Royal
Meteorological Society, 140(682), 1590-1602.

3. GT4Py Porting of FVM

Stencils
compute grid
point values by
accessing a
fixed pattern
of neighbors.

2. GT4Py: A Framework for Stencil Applications
@gtscript.stencil(backend="...")

def laplacian(

 in_phi: gtscript.Field[float], out_lap: gtscript.Field[float]

):

 with computation(PARALLEL), interval(...):

 out_lap[0, 0, 0] = - 4 * in_phi[0, 0, 0] \

 + in_phi[-1, 0, 0] + in_phi[1, 0, 0] \

 + in_phi[0, -1, 0] + in_phi[0, 1, 0]

GTIR

 Frontend

IIR

GridTools

 Optimizations

NumPy DaCe

Vectorized

Python

laplacian(phi, lap, origin=(1, 1, 0), domain=(nx-2, ny-2, nz))

 Code generation

Optimized

C++

Optimized

C++

Backends

 Bindings

● Jointly developed by CSCS, MeteoSwiss
and the Allen Institute for AI (AI2) as part
of the community effort towards single
source code, highly maintainable and
performance-portable models.

● Produce high-performance implementation
of stencil kernels starting from a symbolic
and hardware-agnostic definition.

● Frontend and optimization passes translate
the definition into hierarchy of tree-like
intermediate representations (IR), later
consumed by backends to synthetize
optimized and/or purpose-built code.

● Generated code is transparently compiled
and seamlessly accessible from Python.

v Near-Global Moist Configuration
➜ Moist compressible equations coupled to ECMWF cloud scheme (CLOUDSC).
➜ Regular grid covering the latitude range +/- 80°.
➜ Global model version with the quasi-uniform ECMWF octahedral grid under

development with the new declarative GT4Py (cf. poster “GT4Py: A Python
Framework for the Development of High-Performance Weather and Climate
Applications”).

Solution to the moist baroclinic wave test case (Ullrich et al. 2014) at day ten using the FVM in a
near-global configuration with a horizontal equatorial grid spacing of 25 km (left) and 12 km (right),
using 64-bit (top) and 32-bit (bottom) floating point arithmetic. Shown are cloud fraction at about 2
km above the surface (shading) and surface pressure (contour levels with 10 hPa interval).

v Large-Eddy Simulation (LES) Configuration
➜ The model has been extended with LES capabilities for boundary layer research

over complex orography (cf. poster “Investigating the Mechanism of a Local
Windstorm in the Swiss Alps Using Large-Eddy Simulations“).

v Distributed-Memory Implementation
➜ The model runs on multiple CPUs and GPUs via a prototype distributed-

memory version where halo exchanges are performed in a semi-automatic
fashion using the Python bindings to the generic exascale-ready library GHEX
(github.com/ghex-org/GHEX).

Weak scaling of FVM from 64 to 2048 nodes of the hybrid partition of the Piz Daint
supercomputer at CSCS. Runtimes on either CPUs (GridTools k-first memory layout backend
of GT4Py (Afanasyev et al. 2021)) or GPUs (DaCe backend of GT4Py (Ben-Nun et al. 2022)).

v Reduced Precision
➜ The model executes entirely in either double and single floating point precision.

Performance delivered by four backends of GT4Py on a single hybrid node of Piz Daint.
The backends run in 64-bit (right) and 32-bit (left) floating point precision either on CPU (k-first
and i-first memory layout) or GPU (CUDA and DaCe).

The microphysics packages CLOUDSC (Müller et al. 2019; github.com/ecmwf-ifs/dwarf-p-cloudsc)
and CLOUDSC2 (in its nonlinear, tangent-linear and adjoint formulations; github.com/ecmwf-
ifs/dwarf-p-cloudsc2-tl-ad) have been fully rewritten in Python using GT4Py.

Execution time for the CLOUDSC dwarf (left) and the Taylor test for the tangent-linear formulation of CLOUDSC2
(right) measured on a single hybrid node of Piz Daint. Displayed are three FORTRAN versions (either blended with
OpenMP and OpenACC compiler directives, or using the source-to-source translation tool Loki (github.com/ecmwf-
ifs/loki)); an optimized CUDA C implementation; and the GT4Py rewriting (CPU k-first and DaCe backends).

https://www.pasc-ch.org/projects/2021-2024/kilos

