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Locational Marginal Pricing

LMP represents the minimum cost to supply additional load from electricity generators at a specific
node. Accurate forecasting of LMPs is, therefore, essential for market participants, such as balancing
and flexibility service providers, to optimize the scheduled operation and bidding strategy.
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• Regular power systems are generally large and complex, thus computing LMP becomes pro-
hibitively expensive.

• The increasing penetration of renewable energy sources increases the volatility and unpredictabil-
ity of electricity prices.

• To address these challenges, machine learning tools can be leveraged to predict LMP with much
less computational effort and time.

PGLib-OPF, MATPOWER and MOSEK

PGLib-OPF is a benchmark library curated and designed to evaluate a well-established version of
the AC-OPF or DC-OPF problem formulations of 60 standard electricity grids sourced from various
literature. The choice of electricity grids and their descriptions are stated below.

Description of electricity grids under consideration

Case # load buses # generator buses # branches

case30a 30 6 41
case240 240 143 448
case1354 1354 260 1991
case1888b 1888 296 2531

• The PGLib-OPF models contain static data, i.e., a snapshot of
the grid state in a single time instance.

• They consist data like individual voltage levels across nodes, grid
topology, power injection and power withdrawal.

• This single snapshot translates into a single DC-OPF optimization
problem imported into MATPOWER.

• The DC-OPF formulation is then solved using an optimization
solver like MOSEK.

aThe grid shown on the right
bThe grid shown on the left

Data Generation and ML Models

The process followed to generate data is mention in the flowchart
below. The nodal level perturbations sPd

are calculated using
global and local scaling factor sgrid and snodal respectively.

sPd
= 1 +

sgrid × snodal
100

Features extracted from grid data:

• Active power demands Pd at each load bus.

• Transmission capacity factor Pl is defined as:

Pl =
Pd

Pmax
l

Hyper-parameters tuning for all our ML models were conducted
using bayesian optimisation using a subset of the training data
to decide the hyper-parameters used for the experiments. The
choice of ML models for the study are:

1. Decision Tree Regression (DTR),

2. Gradient Boosting Regression (GBR),

3. Random Forest Regression (RFR),

4. Deep Neural Network with multiple hidden layers (NN - 1
& 2).

In each experiment, 100 instances of the ML models were trained
on the same training dataset. The average of result metrics (ac-
curacy) from 100 instances is considered. The result metric is:
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Numerical Results
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Solution of Large Scale SCOPF Problems

Benchmark Setup

1

The simulations are performed on the ICS cluster at USI, Lugano,
which consists of 41 nodes equipped with two 10-core Intel Xeon
E5-2650 v3 with frequency 2.30GHz. The nodes have 128 GB
RAM memory. The language and library stack used for this
projects are: Python 3.7, MATLAB R2020a, MATPOWER 7.1,
MOSEK 10, PyTorch 10.1, Scikit-Learn 1.0.2, Bayesian Optimiza-
tion 1.4.2 and Scikit-Optimize 0.9.0.

Processing Time
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Processing time represents the time required to generate the re-
sponse by a pre-trained ML model for 5000 instances of electricity
grids representing LMP prediction. This measure reveals how long
the ML model will take to process the data once the training is
complete. We compare it with the time taken to solve the opti-
mization problems of the same instances using MATPOWER and
MOSEK.

Training Time
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Training time is defined as the average time it takes for a ML
model to learn from 5000 electricity grid snapshots. Once trained,
the model can process new data, which is usually significantly
faster than the training process. The plot compares the training
time of the ML models with the processing time of MATPOWER
and MOSEK for 5000 instances of electricity grid data.


