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Spatial-temporal Bayesian Modeling
Despite the increasing interest in Bayesian computing, large-scale inference tasks 
continue to pose a computational challenge that often requires a trade-off between 
accuracy and computation time. We present a highly scalable approach for performing 
spatial-temporal Bayesian modelling based on the methodology of integrated nested 
Laplace approximations (INLA), combining solution strategies from the field of high-
performance computing with state-of-the-art statistical learning techniques. We leverage 
different parallelization strategies to fully utilize the power of today’s distributed 
compute architectures and introduce highly optimized sparse linear algebra routines to 
handle the computational kernel operations [*].

Application

Atmospheric Temperature Modeling

✦ Non-separable spatial-temporal random field
 365 days (year 2021)
➡ >1m latent parameters

✦ Fixed effects for e.g. elevation, latitude, temporal spline

Integrated Nested Laplace Approximations (INLA)
❖ Deterministic methodology for performing Bayesian inference
❖ Applicable to latent Gaussian models
❖ Relies on a nested approximation strategy that employs sparse Gaussian Markov 

random fields in the latent parameter space

Stochastic Partial Differential Equations (SPDE)

❖ Recasts the spatial-temporal component of the model as the solution to an SPDE
❖ Can be discretised and efficiently solved using Finite Element method
❖ Based on Matérn covariance function

Benchmarks
Synthetic dataset with  >1m latent parameters,  >2m i.i.d. observations
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We developed a selected block inversion routine that efficiently handles the 
computational kernel operations. It is tailored to the arising precision matrix structure of 
block tridiagonal arrowhead matrices. It can efficiently compute their Cholesky 
decompositions and find the diagonal elements of their inverse. We put forward a GPU 
implementation using MAGMA and CuBLAS.
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