
Level 3 - Parallel Block Cholesky Factorization Distributed Shared Memory Approach

Spatial-temporal Bayesian Modeling
Despite the increasing interest in Bayesian computing, large-scale inference tasks
continue to pose a computational challenge that often requires a trade-off between
accuracy and computation time. We present a highly scalable approach for performing
spatial-temporal Bayesian modelling based on the methodology of integrated nested
Laplace approximations (INLA), combining solution strategies from the field of high-
performance computing with state-of-the-art statistical learning techniques. We leverage
different parallelization strategies to fully utilize the power of today’s distributed
compute architectures and introduce highly optimized sparse linear algebra routines to
handle the computational kernel operations [*].

Application

Atmospheric Temperature Modeling

✦ Non-separable spatial-temporal random field
 365 days (year 2021)
➡ >1m latent parameters

✦ Fixed effects for e.g. elevation, latitude, temporal spline

Integrated Nested Laplace Approximations (INLA)
❖ Deterministic methodology for performing Bayesian inference
❖ Applicable to latent Gaussian models
❖ Relies on a nested approximation strategy that employs sparse Gaussian Markov

random fields in the latent parameter space

Stochastic Partial Differential Equations (SPDE)

❖ Recasts the spatial-temporal component of the model as the solution to an SPDE
❖ Can be discretised and efficiently solved using Finite Element method
❖ Based on Matérn covariance function

Benchmarks
Synthetic dataset with >1m latent parameters, >2m i.i.d. observations

High Performance Computing Meets
 Approximate Bayesian Inference

Lisa Gaedke-Merzhäuser1, Steven Rennich2, Elias Krainski3, Håvard Rue3, Olaf Schenk1

[*] G.-M. L, Krainski E, Janalik R, Rue H, Schenk O. Integrated Nested Laplace Approximations for Large-Scale Spatial-Temporal Bayesian Modeling. arXiv preprint arXiv:2303.15254. 2023 Mar 27.

Level 1

Level 2

Level 3

f(θl
0)

Qx(θl
0)

Factorize

…

Qx|y(θl
0)

Factorize
Solve

…

…

…

…

f(θl
D)

Qx(θl
D)

Factorize

…

Qx|y(θl
D)

Factorize
Solve

…

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

Stream 1 Stream 2 Stream 3

for i = 2,3,…nt − 1
LEi−1

← Ei−1 ⋅ LinvT
Di−1

Di ← Di − LEi−1
⋅ LT

Ei−1
LFi

← LFi
− LFi−1

⋅ LT
Ei−1

Dnt+1 ← Dnt+1 − LFi−1
⋅ LT

Fi−1
CopyDevToHost(L:i−1)

end for

LFnt
← Fnt

⋅ LinvT
Dnt

Dnt+1 ← Dnt+1 − LFnt
⋅ LT

Fnt

LDnt+1
← chol(Dnt+1)

CopyDevToHost(L:nt
)

CopyHostToDev(Q:1)

LFi−1
← Fi−1 ⋅ LinvT

Di−1

CopyDevToHost(L:nt+1
)

CopyHostToDev(D:nt+1)

CopyHostToDev(Q:i)

LD1
← chol(D1)

LinvT
D1

← L−T
D1

LDi
← chol(Di)

LinvT
Di

← L−T
Di

Dnt
← Dnt

− LFnt−1
⋅ LT

Fnt−1

LDnt
← chol(Dnt

)

LinvT
Dnt

← L−T
Dnt

CopyHostToDev(Q:nt
)

CopyDevToHost(L:nt−1)

1Institute of Computing, Università della Svizzera italiana,
2Nvidia Corp., Santa Clara, California, U.S.A.
3CEMSE Division, King Abdullah University of Science and Technology

A100 A100
0

2,000

4,000

Qx Qx|y

G
fl
op

/s

numerator denominator

0.3(1.8%)
3.1(16.7%)

13.4(71.3%)

1.9(10.2%)

0.2(1.3%)

11(58.5%)

0.9(4.7%)

ev
al
u
at
io
n
f
(✓
)

assembly Cholesky solve other

We developed a selected block inversion routine that efficiently handles the
computational kernel operations. It is tailored to the arising precision matrix structure of
block tridiagonal arrowhead matrices. It can efficiently compute their Cholesky
decompositions and find the diagonal elements of their inverse. We put forward a GPU
implementation using MAGMA and CuBLAS.

Q11

Q21

QT
21

Q22

Q32

QT
32

Q33

Qnt

Qnt+2

Qnt+11

Qnt+21 Qnt+22

L11

L22L21

L32

LDnt

Lnt+2nt+2

Lnt+11

Lnt+21 Lnt+22

Std. Dev. spatial-temporal random field

1 2 3 5 9 18

103

104

GPUs

ru
nt
im

e
[s
ec
]

0

5

10

15

20

sp
ee
d
u
p

0 100 200 300 400 500
0

1

2

3

4

time steps

n
or
m
al
iz
ed

ru
nt
im

e

Strong Scaling Temporal Scaling

Kernel Operations Performance

