Presentation

Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation
DescriptionWe develop a set of highly efficient and effective computational algorithms and simulation tools for fluid simulations on a network. The mathematical models are a set of hyperbolic conservation laws on edges of a network, as well as coupling conditions on junctions of a network. For example, the shallow water system, together with flux balance and continuity conditions at river intersections, model water flows on a river network. The computationally accurate and robust discontinuous Galerkin methods, coupled with explicit strong stability preserving Runge-Kutta methods, are implemented for simulations on network edges. Meanwhile, linear and nonlinear scalable Riemann solvers are being developed and implemented at network vertices. These network simulations result in tools that are added to the existing PETSc and DMNetwork software libraries for the scientific community in general. Simulation results of a shallow water system on a Mississippi river network with over one billion network variables are performed on an extreme-scale computer using up to 8,192 processor with an optimal parallel efficiency. Further potential applications include traffic flow simulations on a highway network and blood flow simulations on a arterial network, among many others.
SlidesPDF
TimeTuesday, June 2715:00 - 15:30 CEST
LocationFlüela
Event Type
Paper
Domains
Physics
Computer Science, Machine Learning, and Applied Mathematics